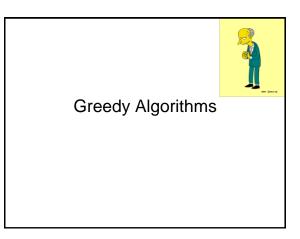


Stable Matching Results

- Averages of 5 runs
- Much better for M than W
- Why is it better for M?
- What is the growth of mrank and w-rank as a function of n?

n	m-rank	w-rank
500	5.10	98.05
500	7.52	66.95
500	8.57	58.18
500	6.32	75.87
500	5.25	90.73
500	6.55	77.95
1000	6.80	146.93
1000	6.50	154.71
1000	7.14	133.53
1000	7.44	128.96
1000	7.36	137.85
1000	7.04	140.40
2000	7.83	257.79
2000	7.50	263.78
2000	11.42	175.17
2000	7.16	274.76
2000	7.54	261.60
2000	8.29	246.62

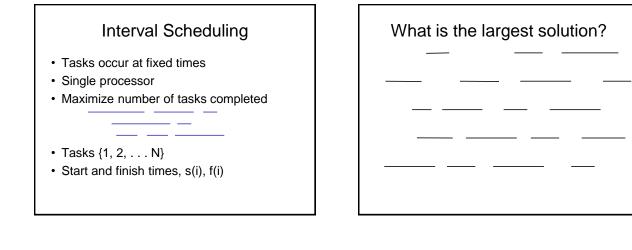


Greedy Algorithms

- Solve problems with the simplest possible algorithm
- The hard part: showing that something simple actually works
- Pseudo-definition
 - An algorithm is Greedy if it builds its solution by adding elements one at a time using a simple rule

Scheduling Theory

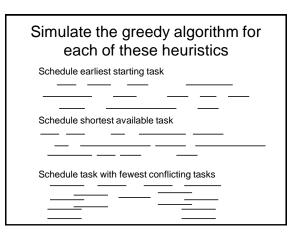
- Tasks
 - Processing requirements, release times, deadlines
- Processors
- Precedence constraints
- · Objective function
 - Jobs scheduled, lateness, total execution time



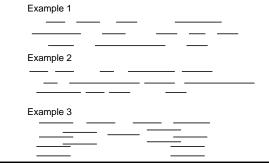
Greedy Algorithm for Scheduling Let T be the set of tasks, construct a set of independent tasks I, A is the rule determining the greedy algorithm

 $\mathsf{I}=\{\ \}$

While (T is not empty) Select a task t from T by a rule A Add t to I Remove t and all tasks incompatible with t from T



Greedy solution based on earliest finishing time



Theorem: Earliest Finish Algorithm is Optimal

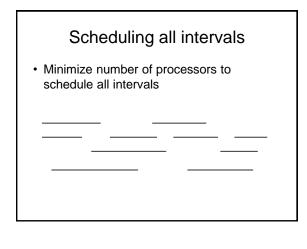
- Key idea: Earliest Finish Algorithm stays ahead
- Let A = {i₁, ..., i_k} be the set of tasks found by EFA in increasing order of finish times
- Let $B = \{j_1, \ldots, j_m\}$ be the set of tasks found by a different algorithm in increasing order of finish times
- Show that for r<= min(k, m), $f(i_r) \leq f(j_r)$

Stay ahead lemma

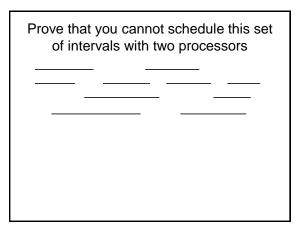
- A always stays ahead of B, f(i_r) <= f(j_r)
- Induction argument $\begin{array}{l} -f(i_1) <= f(j_1) \\ \mbox{ If } f(i_{r-1}) <= f(j_{r-1}) \mbox{ then } f(i_r) <= f(j_r) \end{array}$

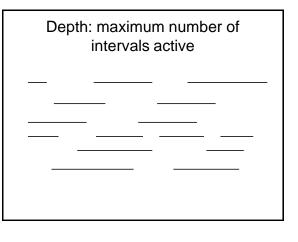
Completing the proof

- Let $A = \{i_1, \ldots, i_k\}$ be the set of tasks found by EFA in increasing order of finish times
- Let $O = \{j_1, \ldots, j_m\}$ be the set of tasks found by an optimal algorithm in increasing order of finish times
- If k < m, then the Earliest Finish Algorithm stopped before it ran out of tasks



How many processors are needed for this example?				





Algorithm

- · Sort by start times
- Suppose maximum depth is d, create d slots
- Schedule items in increasing order, assign each item to an open slot
- Correctness proof: When we reach an item, we always have an open slot

What happens on "Random" sets of intervals

- Given n random intervals
 - What is the expected number independent intervals
 - What is the expected depth

What is a random set of intervals

- Method 1:
 - Each interval assigned random start position in [0.0, 1.0]
 - Each interval assigned a random length in [0.0, 1.0]
- Method 2:
 - Start with the array [1, 1, 2, 2, 3, 3, 4, 4, 5, 5]
 - Randomly permute it [2, 1, 4, 2, 3, 4, 5, 1, 3, 5]
 - Index of the first j is the start of interval j, and the index of the second j is the end of interval j

Scheduling tasks

- Each task has a length t_i and a deadline d_i
- · All tasks are available at the start
- One task may be worked on at a time
- All tasks must be completed
- Goal minimize maximum lateness
 Lateness = f_i d_i if f_i >= d_i

Example				
Time		Deadline		
2		2		
3		4		
2	3	Lateness 1		
3	2	Lateness 3		

