CSE 421 Algorithms

Autumn 2019 Lecture 6

Announcements

- Reading
 - Start on Chapter 4

Graph Theory

- G = (V, E)
 - V: vertices, |V|= n
 - E: edges, |E| = m
- Undirected graphs
 - Edges sets of two vertices
 {u, v}
- Directed graphs
- Edges ordered pairs (u, v)
- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops

- Path: v₁, v₂, ..., v_k, with (v_i, v_{i+1}) in E
 Simple Path

 - CycleSimple Cycle
- Neighborhood
- N(v)
- Distance
- Connectivity
 - UndirectedDirected (strong connectivity)
- Trees

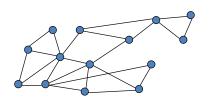
 - RootedUnrooted

Last Lecture

- Bipartite Graphs: two-colorable graphs
- · Breadth First Search algorithm for testing twocolorability
 - Two-colorable iff no odd length cycle
 - BFS has cross edge iff graph has odd cycle

Graph Search

· Data structure for next vertex to visit determines search order

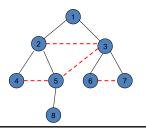


Graph search

Breadth First Search $S = \{s\}$ while S is not empty u = Dequeue(S)if u is unvisited visit u foreach v in N(u) Enqueue(S, v) Depth First Search $S = \{s\}$ while S is not empty u = Pop(S)if u is unvisited visit u foreach v in N(u) Push(S, v)

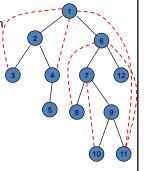
Breadth First Search

 All edges go between vertices on the same layer or adjacent layers



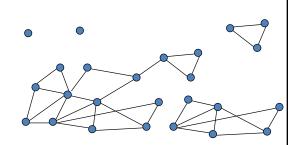
Depth First Search

- Each edge goes between/ vertices on the same branch
- · No cross edges



Connected Components

Undirected Graphs

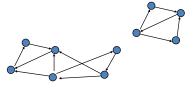


Computing Connected Components in O(n+m) time

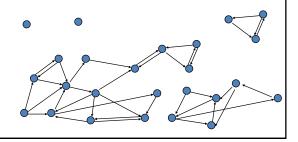
- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

Directed Graphs

 A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.



Identify the Strongly Connected Components

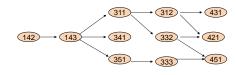


Strongly connected components can be found in O(n+m) time

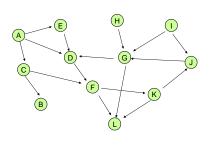
- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v's scc in O(n+m) time

Topological Sort

• Given a set of tasks with precedence constraints, find a linear order of the tasks



Find a topological order for the following graph



If a graph has a cycle, there is no

- on the cycle in the
- · It must have an incoming edge

Acyclic if it has no cycles

topological sort · Consider the first vertex topological sort Definition: A graph is

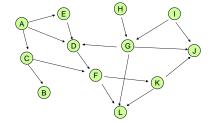
Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0

- - Pick a vertex v₁, if it has in-degree 0 then done
 - If not, let (v_2, v_1) be an edge, if v_2 has in-degree 0 then done
 - If not, let (v_3, v_2) be an edge . . .
 - If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Topological Sort Algorithm

Output vertex v Delete the vertex v and all out going edges

While there exists a vertex v with in-degree 0



Details for O(n+m) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at O(1) cost each