10/1/2019

CSE 421
Algorithms

Autumn 2019
Lecture 6

Announcements

* Reading
— Start on Chapter 4

Graph Theory

G=(V,E) * Path: v, VE’ <y Vi With
— V: vertices, |V|=n (vi, V_i+1) in
— E: edges, |[E|]=m - Slmlple Path
. — Cycle
Ung(;reCtec: grfatphs i — Simple Cycle
_ (u’gve}s sets of two vertices « Neighborhood
Directed graphs = N(v)
— Edges ordered pairs (u, v) * Dlstance')
Many other flavors * Connectivity
— Edge / vertices weights - Updlrected »
— Parallel edges — Directed (strong connectivity)
- ¢ Trees
Self loops S rooted
— Unrooted

Last Lecture

* Bipartite Graphs : two-colorable graphs
* Breadth First Search algorithm for testing two-

colorability
— Two-colorable iff no odd length cycle
— BFS has cross edge iff graph has odd cycle

Graph Search

¢ Data structure for next vertex to visit
determines search order

Graph search

Breadth First Search Depth First Search
S={s} S={s}
while S is not empty while S is not empty
u = Dequeue(S) u = Pop(S)
if u is unvisited if u is unvisited
visit u visit u
foreach v in N(u) foreach v in N(u)

Enqueue(S, v) Push(S, v)

Breadth First Search

* All edges go between vertices on the same
layer or adjacent layers

10/1/2019

Depth First Search

* Each edge goes between,”” i
1
vertices on the same ! /

branch ! "y,

* No cross edges

STz----_2F

Connected Components

* Undirected Graphs

ek

Computing Connected Components in
O(n+m) time
* A search algorithm from a vertex v can find all
vertices in v's component

* While there is an unvisited vertex v, search
from v to find a new component

Directed Graphs

* A Strongly Connected Component is a subset
of the vertices with paths between every pair

of vertices.

Identify the Strongly Connected
Components

o © 'V

‘%/\‘

Strongly connected components can be
found in O(n+m) time

e Butit’s tricky!

* Simpler problem: given a vertex v, compute the
vertices in v’s scc in O(n+m) time

10/1/2019

Topological Sort

* Given a set of tasks with precedence
constraints, find a linear order of the tasks

G — Q> — @D

N
_’@

— @D

Find a topological order for the following
graph

If a graph has a cycle, there is no
topological sort

* Consider the first vertex
on the cycle in the (® @)
topological sort

* It must have an
incoming edge

Definition: A graph is
Acyclic if it has no cycles

Lemma: If a (finite) graph is acyclic, it has a
vertex with in-degree 0

* Proof:
— Pick a vertex v,, if it has in-degree 0 then done

—If not, let (v,, v,) be an edge, if v, has in-degree 0
then done

—If not, let (v;, v,) be an edge . ..

— If this process continues for more than n steps, we
have a repeated vertex, so we have a cycle

Topological Sort Algorithm

While there exists a vertex v with in-degree 0
Output vertex v

Delete the vertex v and all out going edges

Details for O(n+m) implementation

Maintain a list of vertices of in-degree 0
Each vertex keeps track of its in-degree

Update in-degrees and list when edges are
removed

m edge removals at O(1) cost each

10/1/2019

