CSE 421: Introduction to Algorithms

Lecture 6

Paul Beame

Generic Graph Traversal Algorithm

Find: set \mathbf{R} of vertices reachable from $\mathbf{s} \in \mathbf{V}$

Reachable(s):
$\mathbf{R} \leftarrow\{\mathbf{s}\}$
While there is a $(\mathbf{u}, \mathbf{v}) \in \mathbf{E}$ where $\mathbf{u} \in \mathbf{R}$ and $\mathbf{v} \notin \mathbf{R}$ Add \mathbf{v} to \mathbf{R}
Return \mathbf{R}

Graph Traversal

- Learn the basic structure of a graph
- Walk from a fixed starting vertex sto find all vertices reachable from s
- Three states of vertices
- unvisited
- visited/discovered (in R)
- fully-explored (in \mathbf{R} and all neighbors in \mathbf{R})

Last time: Breadth-First Search

- Completely explore the vertices in order of their distance from s
- Naturally implemented using a queue

BFS(s)

Global initialization: mark all vertices "unvisited" BFS(s)

```
mark s "visited"; R}\leftarrow{\mathbf{s}}; layer \mp@subsup{L}{0}{}\leftarrow{\mathbf{s}
while Li
    Li+1
    For each u\inL
        for each edge {u,v}
        if (v is "unvisited")
            mark v "visited"
            Add v to set R}\mathrm{ and to layer }\mp@subsup{\mathbf{L}}{\mathbf{i}+\mathbf{1}}{
    mark u "fully-explored"
    i}\leftarrow\mathbf{i+1
```


Properties of BFS

BFS tree:

- The rooted tree of edges followed when the BFS algorithm first discovers each vertex
- Tree for BFS(s) gives the shortest paths (in \# of hops) from s to each vertex reachable from s.
- On undirected graphs
- All non-tree BFS edges join vertices on the same or adjacent layers

BFS Application: Shortest Paths

Tree gives shortest paths from start vertex

BFS gives Bipartiteness

- Run BFS assigning all vertices from layer L_{i} the color i mod 2
- i.e. red if they are in an even layer, blue if in an odd layer
- If there is an edge joining two vertices \mathbf{u} and v from the same layer then output "Not Bipartite"

Why does it work?

Cycle length 2(j-i)+1

Graph Search Application: Connected Components

- Want to answer questions of the form:
- Given: vertices \mathbf{u} and \mathbf{v} in \mathbf{G}
- Is there a path from \mathbf{u} to \mathbf{v} ?
- Idea: create array A such that $\mathrm{A}[\mathbf{u}]=$ smallest numbered vertex

Q: Why not create an array
Path[$\mathbf{u}, \mathbf{v}]$? that is connected to \mathbf{u}

- question reduces to whether $\mathbf{A}[\mathbf{u}]=\mathrm{A}[\mathrm{v}]$?

Graph Search Application: Connected Components

- initial state: all v unvisited for $\mathbf{s} \leftarrow \mathbf{1}$ to n do
if state $(\mathbf{s}) \neq$ "fully-explored" then
BFS(s): setting $\mathbf{A}[\mathbf{u}] \leftarrow \mathbf{s}$ for each \mathbf{u} found (and marking u visited/fully-explored) endif
endfor
- Total cost: $\mathbf{O}(\mathbf{n}+\mathbf{m})$
- each vertex is touched once in this outer procedure and the edges examined in the different BFS runs are disjoint
- works also with "Depth First Search"

DFS(u) - Recursive version

Global Initialization: mark all vertices "unvisited" DFS(\mathbf{u})
mark \mathbf{u} "visited" and add \mathbf{u} to \mathbf{R}
for each edge $\{\mathbf{u}, \mathbf{v}\}$
if (\mathbf{v} is "unvisited")
DFS(v)
end for
mark u "fully-explored"

Properties of DFS(s)

- Like BFS(s):
- DFS(s) visits \mathbf{x} if and only if there is a path in G from s to x
- Edges into undiscovered vertices define a "depth first spanning tree" of G
- Unlike the BFS tree:
- the DFS spanning tree isn't minimum depth
- its levels don't reflect min distance from the root
- non-tree edges never join vertices on the same or adjacent levels
- BUT...

Non-tree edges

- All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree
- No cross edges.

No cross edges in DFS on undirected graphs

- Claim: During DFS(x) every vertex marked visited is a descendant of \mathbf{x} in the DFS tree T
- Claim: For every \mathbf{x}, \mathbf{y} in the DFS tree \mathbf{T}, if (\mathbf{x}, \mathbf{y}) is an edge not in \mathbf{T} then one of \mathbf{x} or \mathbf{y} is an ancestor of the other in T
- Proof:
- One of \mathbf{x} or \mathbf{y} is visited first, suppose WLOG that \mathbf{x} is visited first and therefore DFS(x) was called before DFS(y)
- During DFS(x), the edge (x, y) is examined
- Since (x, y) is a not an edge of T, y was visited when the edge (\mathbf{x}, y) was examined during DFS(\mathbf{x})
- Therefore y was visited during the call to DFS(x) so y is a descendant of \mathbf{x}.

DFS(v) for a directed graph

DFS(v)

Properties of Directed DFS

- Before DFS(s) returns, it visits all previously unvisited vertices reachable via directed paths from s
- Every cycle contains a back edge in the DFS tree

Identify the Strongly Connected Components

Strongly connected components can be found in $\mathbf{O}(\mathrm{n}+\mathrm{m})$ time

- But it's tricky!
- Simpler problem: given a vertex \mathbf{v}, compute the vertices in \mathbf{v} 's scc in $\mathbf{O}(\mathbf{n}+\mathbf{m})$ time

Strongly Connected Components

Directed Acyclic Graphs

- A directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is acyclic if it has no directed cycles
- Terminology: A directed acyclic graph is also called a DAG

Topological Sort

- Given: a directed acyclic graph (DAG) $\mathbf{G}=(\mathbf{V}, E)$
- Output: numbering of the vertices of G with distinct numbers from 1 to \mathbf{n} so edges only go from lower number to higher numbered vertices
- Applications
- nodes represent tasks
- edges represent precedence between tasks
- topological sort gives a sequential schedule for solving them

Directed Acyclic Graph

In-degree 0 vertices

- Every DAG has a vertex of in-degree 0
- Proof: By contradiction
- Suppose every vertex has some incoming edge
- Consider following procedure:
while (true) do
$\mathbf{v} \leftarrow$ some predecessor of \mathbf{v}
- After $\mathbf{n + 1}$ steps where $\mathbf{n}=|\mathbf{V}|$ there will be a repeated vertex
- This yields a cycle, contradicting that it is a DAG

Topological Sort

- Can do using DFS
- Alternative simpler idea:
- Any vertex of in-degree 0 can be given number 1 to start
- Remove it from the graph and then give a vertex of in-degree 0 number 2, etc.

Topological Sort

Implementing Topological Sort

- Go through all edges, computing array with in-degree for each vertex $\quad \mathbf{O}(\mathbf{m}+\mathbf{n})$
- Maintain a queue (or stack) of vertices of in-degree 0
- Remove any vertex in queue and number it
- When a vertex is removed, decrease in-degree of each of its neighbors by 1 and add them to the queue if their degree drops to 0

Total cost $\mathbf{O}(\mathbf{m}+\mathbf{n})$

Strongly Connected Components \&Topological Sort work well together

- Shrinking each s.c.c. of directed graph to a vertex yields a DAG
- Can apply topological sort to the resulting DAG to get a good order to deal with the s.c.c.'s of the original graph one at a time

