# CSE 421 Algorithms

Autumn 2019 Lecture 6

#### Announcements

• Reading

– Start on Chapter 4

# **Graph Theory**

- G = (V, E)
  - V: vertices, |V| = n
  - E: edges, |E| = m
- Undirected graphs
  - Edges sets of two vertices {u, v}
- Directed graphs
  - Edges ordered pairs (u, v)
- Many other flavors
  - Edge / vertices weights
  - Parallel edges
  - Self loops

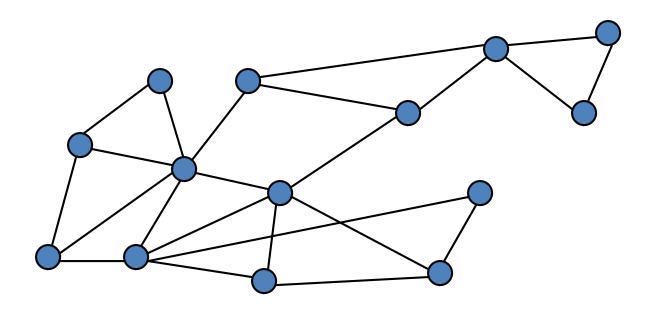
- Path:  $v_1, v_2, ..., v_k$ , with  $(v_i, v_{i+1})$  in E
  - Simple Path
  - Cycle
  - Simple Cycle
- Neighborhood
  N(v)
- Distance
- Connectivity
  - Undirected
  - Directed (strong connectivity)
- Trees
  - Rooted
  - Unrooted

#### Last Lecture

- Bipartite Graphs : two-colorable graphs
- Breadth First Search algorithm for testing twocolorability
  - Two-colorable iff no odd length cycle
  - BFS has cross edge iff graph has odd cycle

### **Graph Search**

• Data structure for next vertex to visit determines search order



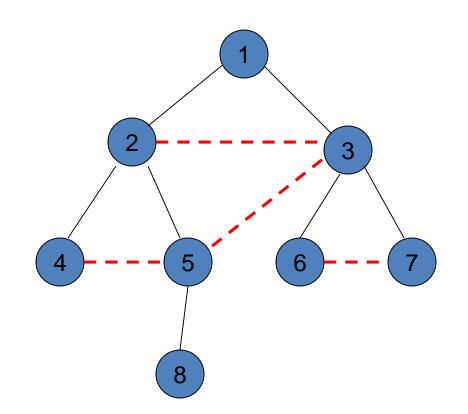
### Graph search

**Breadth First Search** 

S = {s} while S is not empty u = Dequeue(S) if u is unvisited visit u foreach v in N(u) Enqueue(S, v) Depth First Search S = {s} while S is not empty u = Pop(S) if u is unvisited visit u foreach v in N(u) Push(S, v)

### Breadth First Search

 All edges go between vertices on the same layer or adjacent layers

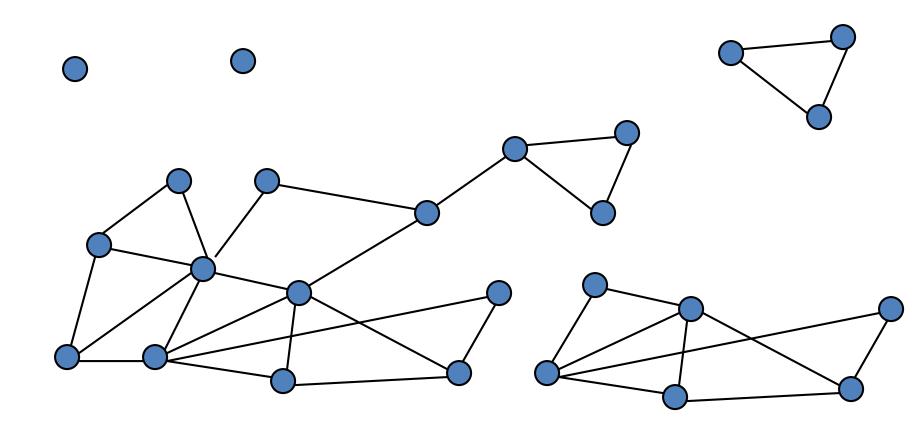


### Depth First Search

- Each edge goes between, vertices on the same branch
- No cross edges

### **Connected Components**

• Undirected Graphs

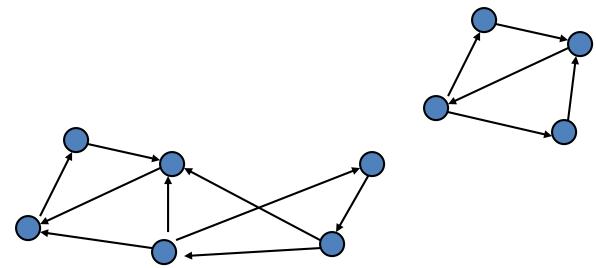


# Computing Connected Components in O(n+m) time

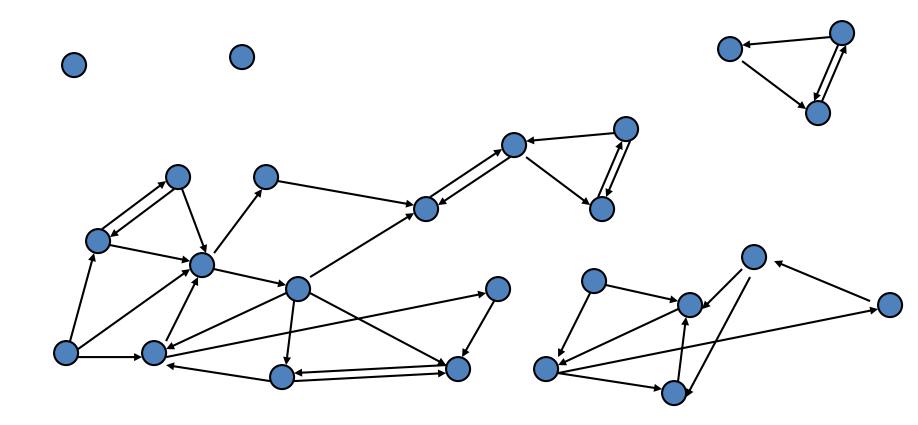
- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

### **Directed Graphs**

 A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.



#### Identify the Strongly Connected Components

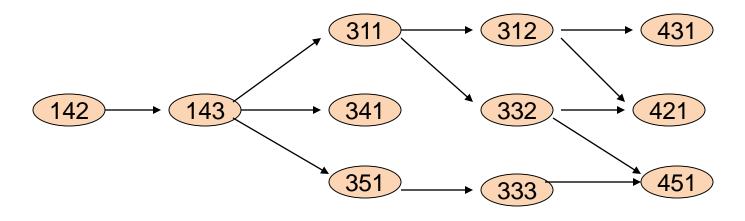


# Strongly connected components can be found in O(n+m) time

- But it's tricky!
- Simpler problem: given a vertex v, compute the vertices in v's scc in O(n+m) time

### **Topological Sort**

• Given a set of tasks with precedence constraints, find a linear order of the tasks

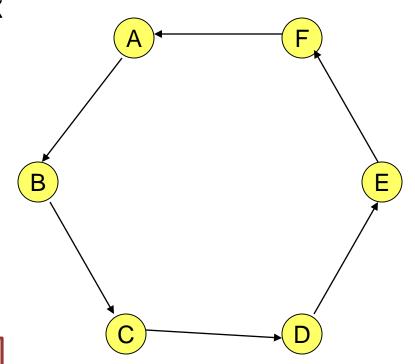


# Find a topological order for the following graph



# If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge



Definition: A graph is Acyclic if it has no cycles

# Lemma: If a (finite) graph is acyclic, it has a vertex with in-degree 0

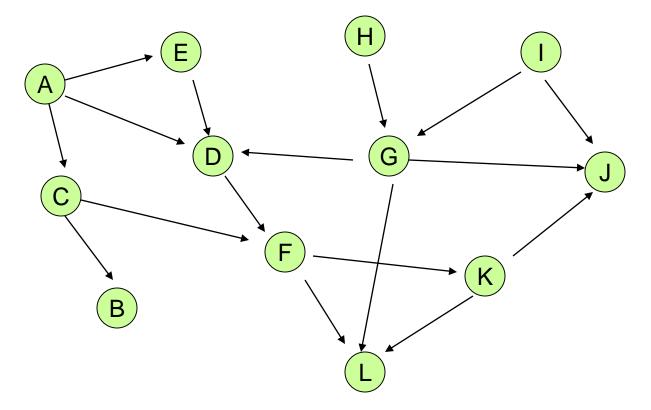
- Proof:
  - Pick a vertex  $v_1$ , if it has in-degree 0 then done
  - If not, let  $(v_2, v_1)$  be an edge, if  $v_2$  has in-degree 0 then done
  - If not, let  $(v_3, v_2)$  be an edge . . .
  - If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

# **Topological Sort Algorithm**

While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all out going edges



#### Details for O(n+m) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at O(1) cost each