
CSE 421

Algorithms

Autumn 2019

Lecture 5



Graphs

Represent objects and the relationships between pairs of them.

Formally: 

A graph is a pair: G = (V,E)

V: set of vertices (aka nodes)

E: set of edges
-Each edge is a pair of vertices. 

A

B

C

D

{𝐴, 𝐵, 𝐶, 𝐷}

{{𝐴, 𝐵}, {𝐵, 𝐶}, {𝐵, 𝐷}, {𝐶, 𝐷}}



Graph Terms

Graphs can be directed or undirected.

A

B

C

D

E

A

B

C

D

E

disconnected
Weakly connected:

if you ignore the direction of edges, it’s connected

Strongly connected:

Can get from u to v AND from v back to u for all 

u,v

{B,C,D} is a component

Edge (C,D) 

Order matters, 

so pair, not a set.



Graph Terms

Path – A sequence of adjacent vertices. Each connected to next by an edge.

(Directed) Path–must follow the direction of the edges

Length – The number of edges in a path

- (A,B,C,D) has length 3.

A B C D

A B C D

A,B,C,D is a path.

So is A,B,A

A,B,C,D,B is a directed path.

A,B,A is not.



Graph Terms

Simple Path – A path that doesn’t repeat a vertex. 
A,B,C,D is a simple path. A,B,A is not.

Cycle – simple path with an extra edge from last vertex back to first.

Be careful when looking at other sources!
-Other sources use “path” to mean what we call a “simple path”

A B C D

A B C D
Extra edge must be a new edge, not reusing 

an old one.



More Graph Terms

Neighborhood
- All the edges you have are connected to directly by an edge.

-𝑁 𝐷 = 𝐴, 𝐸, 𝐹, 𝐺

- In directed graphs, have “out-neighborhood” and “in-
neighborhood”

Distance – length of the shortest path between two 
vertices.
- In directed graphs, 𝑑(𝑢, 𝑣) might not be 𝑑(𝑣, 𝑢).

Trees – are connected graphs without any cycles. 

We can (optionally) “root” a tree, and think of 
edges going from “top” to “bottom”

F

B

C

D

A

E

G

H

I

J



Representing and Using Graphs



Incidence Matrix

0 1 2 3 4 5 6

0 0 1 1 0 0 0 0

1 1 0 0 1 0 0 0

2 1 0 0 1 0 0 0

3 0 1 1 0 0 1 0

4 0 0 0 0 0 1 0

5 0 0 0 1 1 0 0

6 0 0 0 0 0 0 0

6
2 3

4

5

0 1

In an incidence matrix a[u][v] is 1 if 

there is an edge (u,v), and 0 otherwise.

Worst-case Time Complexity 

(|V| = n, |E| = m):

Add Edge: 

Remove Edge: 

Check edge exists from (u,v): 

Get outneighbors of u: 

Get inneighbors of u:

Space Complexity:

O(1)

O(1)

O(1)
O(𝑛)

O(𝑛)

O(𝑛2)



Adjacency List

0

1

2

3

4

5

6

6
2 3

4

5

0 1

1 → 2

0 → 3

0 → 3

3 → 4

5

1 → 2 → 5

An array where the 𝑢th element contains a list of 

neighbors of 𝑢.

Directed graphs: list of out-neighbors (a[u] has v for all 

(u,v) in E)

Time Complexity (|V| = n, |E| = m):

Add Edge: 

Remove Edge (u,v): 

Check edge exists from (u,v): 

Get all outneighbors of u:

Get all inneighbors of u:

Space Complexity:

O(1)
O( deg(𝑢) )

O(deg 𝑢 )

O(𝑛 + 𝑚)

O(𝑛 + 𝑚)

Suppose we use a linked 

list for each node.

O( deg(𝑢) )



Graph Search



Graph Search

Ways to answer the question “Can I get from 𝑢 to 𝑣?”

Slight modifications will let us answer lots of other questions.

In 332, you used BFS to find shortest paths (in unweighted graphs)

We’ll have more applications of both BFS and DFS in this class.



Breadth First Search

Current node:

Queue:

Finished:

F

B

C

D

A

E

G

H

I

J

A B

A

B E C

D

D F G

BDE

H

E

C

C

F

F

G

G

I

G

H

HI

I

search(graph) 

toVisit.enqueue(first vertex)

mark first vertex as seen

while(toVisit is not empty) 

current = toVisit.dequeue()

for (v : current.neighbors())

if (v is not seen)

mark v as seen 

toVisit.enqueue(v)



Layers

F

B

C

D

A

E

G

H

I

J

Call the starting node (A) layer 0.

𝑁 𝐴 is layer 1.

All nodes we discovered while processing layer 1 is layer 2.

…

All nodes discovered while processing layer 𝑖 is layer 𝑖 + 1.

These are the distances you found in 332 (we’re just using 

them differently today).

Every time an edge discovered a vertex we had never seen 

before, we colored it blue. The others we made gray.

The blue edges form a tree!  (why?)

It’s called the “BFS tree” 

0
1

1

2

2

3

3

3

4



Bipartite Graphs

Application for today: checking if a graph is bipartite.

A graph 𝑉 is bipartite if 𝑉 can be partitioned into 𝑉1, V2 such that all edges connect a vertex 
in 𝑉1to a vertex in 𝑉2.
- For convenience, we’ll also talk about “coloring” vertices – everything in 𝑉1 is red, everything in 𝑉2 is blue.

Bipartite graphs show up a lot.
- You’ve already used them to represent stable matchings.

- You’ll see more when you get to network flows.

Let’s try to identify them.

Given a graph, return TRUE it is bipartite, and FALSE otherwise.

Bipartite Graph identification



By hand

Before we design an algorithm, let’s see if doing it by hand will give us any ideas.

Is this graph bipartite?



By hand

Before we design an algorithm, let’s see if doing it by hand will give us any ideas.

Is this graph bipartite?



How did we know that graph wasn’t bipartite?

It had an odd cycle!

How can we test whether a graph is bipartite?

Pick some arbitrary vertex, and color it red

All of its neighbors must be blue, color them blue (making sure you don’t create a blue-blue 
edge).

All of their neighbors must be red, color them red (making sure you don’t create a red-red 
edge).

…

What algorithm works like this? BFS!



How do we modify this pseudocode 
to 2-color?

Color a vertex when you discover it.

When you reach the end of a layer, 
change colors (how do you know?).

When an edge goes to an already 
discovered vertex, make sure it’s ok.

i.e. connecting opposite colors.

If you finish (for every component) 
return true, if an edge isn’t ok return 
false.

search(graph) 

toVisit.enqueue(first vertex)

mark first vertex as seen

while(toVisit is not empty) 

current = toVisit.dequeue()

for (v : current.neighbors())

if (v is not seen)

mark v as seen 

toVisit.enqueue(v)



Proof of correctness:

If the algorithm outputs TRUE, it’s correct.
- We’ve found the bipartition we’re looking for.

If the algorithm outputs FALSE
- Need to show there isn’t a bipartition. 

- The fact that we found a red-red or blue-blue edge isn’t a proof. That edge means that particular assignments
of red and blue isn’t a bipartition, but maybe there’s another assignment we never checked.

You can argue that the one you were checking is the “only possibility” (and therefore since it 
doesn’t work, the graph really is bipartite)

But an easier argument is to show directly the graph isn’t bipartite. 
- By finding an odd cycle in the graph!



Where’s the odd cycle?

Well…why did our algorithm return false?

It found an edge between two vertices of the same color.

Claim: They were actually in the same layer

Claim: Which means we can find an odd (simple) cycle.



Where’s the odd cycle?

Well…why did our algorithm return false?

It found an edge between two vertices of the same color (call them 𝑢 and 𝑣).

Claim: They were actually in the same layer
- Edges can only go from layer 𝒊 to layer 𝒊 or from 𝒊 to 𝒊 + 𝟏

- otherwise would have been explored by the algorithm.

Claim: Which means we can find an odd cycle.
- Let 𝑤 be the lowest common ancestor of 𝑢 and 𝑣. Consider the path: from 𝑤 to 𝑢 in the the BFS tree, along 
(𝑢, 𝑣), then back up from 𝑣 to 𝑤 in the BFS tree. 

- It’s a cycle (why?) and it’s odd length! (why?)



Takeaways

BFS travels through a graph layer-by-layer.

-You can use those layers in algorithms.

New BFS application: Checking if a graph is bipartite.

New Proof technique:

-Sometimes the output of an algorithm can help us prove a theorem

- The output of BFS let us prove a theorem about graphs

-A graph is bipartite if and only if it has no odd cycles.

-You’ll can also do the opposite: prove a theorem about graphs (or whatever you’re 
working on) and use that to design an algorithm or prove it works.

Monday: Paul Beame will lecture. He’ll talk about Depth First Search.


