
CSE 421
Algorithms

Autumn 2019

Lecture 5

Announcements

• Reading

– Chapter 3 (Mostly review)

– Start on Chapter 4

Review from Wednesday

• Run time function T(n)

– T(n) is the maximum time to solve an instance of
size n

• Disregard constant functions

• T(n) is O(f(n)) [T : Z+
 R+]

– If n is sufficiently large, T(n) is bounded by a
constant multiple of f(n)

– Exist c, n0, such that for n > n0, T(n) < c f(n)

Graph Theory

• G = (V, E)
– V – vertices
– E – edges

• Undirected graphs
– Edges sets of two vertices {u, v}

• Directed graphs
– Edges ordered pairs (u, v)

• Many other flavors
– Edge / vertices weights
– Parallel edges
– Self loops

Definitions

• Path: v1, v2, …, vk, with (vi, vi+1) in E
– Simple Path
– Cycle
– Simple Cycle

• Neighborhood
– N(v)

• Distance
• Connectivity

– Undirected
– Directed (strong connectivity)

• Trees
– Rooted
– Unrooted

Graph Representation

a
b

c
d

V = { a, b, c, d}

E = { {a, b}, {a, c}, {a, d}, {b, d} }

a

b

c

d

b c d

a d

a

a b

1 1 1

1 0 1

1 0 0

1 1 0

Incidence MatrixAdjacency List

Graph search

• Find a path from s to t

S = {s}

while S is not empty

u = Select(S)

visit u

foreach v in N(u)

if v is unvisited

Add(S, v)

Pred[v] = u

if (v = t) then path found

Breadth first search

• Explore vertices in layers

– s in layer 1

– Neighbors of s in layer 2

– Neighbors of layer 2 in layer 3 . . .

s

Key observation

• All edges go between vertices on the same
layer or adjacent layers

2

8

3

7654

1

Bipartite Graphs

• A graph V is bipartite if V can be partitioned
into V1, V2 such that all edges go between V1

and V2

• A graph is bipartite if it can be two colored

Can this graph be two colored?

Algorithm

• Run BFS

• Color odd layers red, even layers blue

• If no edges between the same layer, the graph
is bipartite

• If edge between two vertices of the same
layer, then there is an odd cycle, and the
graph is not bipartite

Theorem: A graph is bipartite if and only if
it has no odd cycles

Lemma 1

• If a graph contains an odd cycle, it is not
bipartite

Lemma 2

• If a BFS tree has an intra-level edge, then the
graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

• If a graph has no odd length cycles, then it is
bipartite

Graph Search

• Data structure for next vertex to visit
determines search order

Graph search

Breadth First Search

S = {s}

while S is not empty

u = Dequeue(S)

if u is unvisited

visit u

foreach v in N(u)

Enqueue(S, v)

Depth First Search

S = {s}

while S is not empty

u = Pop(S)

if u is unvisited

visit u

foreach v in N(u)

Push(S, v)

Breadth First Search

• All edges go between vertices on the same
layer or adjacent layers

2

8

3

7654

1

Depth First Search

• Each edge goes between
vertices on the same
branch

• No cross edges

1

2

5

6

12743

8 9

10 11

