CSE 421

 AlgorithmsAutumn 2019
Lecture 5

Announcements

- Reading
- Chapter 3 (Mostly review)
- Start on Chapter 4

Review from Wednesday

- Run time function $T(n)$
$-T(n)$ is the maximum time to solve an instance of size n
- Disregard constant functions
- $T(n)$ is $O(f(n))$

$$
\left[\mathrm{T}: \mathrm{Z}^{+} \rightarrow \mathrm{R}^{+}\right]
$$

- If n is sufficiently large, $T(n)$ is bounded by a constant multiple of $f(n)$
- Exist $\mathrm{c}, \mathrm{n}_{0}$, such that for $\mathrm{n}>\mathrm{n}_{0}, \mathrm{~T}(\mathrm{n})<\mathrm{c} f(\mathrm{n})$

Graph Theory

- $G=(V, E)$
- V - vertices
- E-edges
- Undirected graphs
- Edges sets of two vertices $\{u, v\}$
- Directed graphs
- Edges ordered pairs (u, v)
- Many other flavors
- Edge / vertices weights
- Parallel edges
- Self loops

Definitions

- Path: $v_{1}, v_{2}, \ldots, v_{k}$, with $\left(v_{i}, v_{i+1}\right)$ in E
- Simple Path
- Cycle
- Simple Cycle
- Neighborhood
- N(v)
- Distance
- Connectivity
- Undirected
- Directed (strong connectivity)
- Trees
- Rooted
- Unrooted

Graph Representation

$$
\begin{aligned}
& V=\{a, b, c, d\} \\
& E=\{\{a, b\},\{a, c\},\{a, d\},\{b, d\}\}
\end{aligned}
$$

	1	1	1
1		0	1
1	0		0
1	1	0	

Incidence Matrix

Graph search

- Find a path from s to t
$S=\{s\}$
while S is not empty

$u=\operatorname{Select}(S)$
visit u foreach v in $N(u)$

if v is unvisited
$\operatorname{Add}(S, v)$
$\operatorname{Pred}[\mathrm{v}]=\mathrm{u}$
if $(v=t)$ then path found

Breadth first search

- Explore vertices in layers
- s in layer 1
- Neighbors of s in layer 2
- Neighbors of layer 2 in layer 3 ...

Key observation

- All edges go between vertices on the same layer or adjacent layers

Bipartite Graphs

- A graph V is bipartite if V can be partitioned into $\mathrm{V}_{1}, \mathrm{~V}_{2}$ such that all edges go between V_{1} and V_{2}
- A graph is bipartite if it can be two colored

Can this graph be two colored?

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1

- If a graph contains an odd cycle, it is not bipartite

Lemma 2

- If a BFS tree has an intra-level edge, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

- If a graph has no odd length cycles, then it is bipartite

Graph Search

- Data structure for next vertex to visit determines search order

Graph search

Breadth First Search

$\mathrm{S}=\{\mathrm{s}\}$
while S is not empty
$u=$ Dequeue(S)
if u is unvisited

visit u
foreach v in $\mathrm{N}(\mathrm{u})$
Enqueue(S, v)

Depth First Search

$$
S=\{s\}
$$

while S is not empty

$$
\mathrm{u}=\mathrm{Pop}(\mathrm{~S})
$$

if u is unvisited
visit u
foreach v in $\mathrm{N}(\mathrm{u})$
Push(S, v)

Breadth First Search

- All edges go between vertices on the same layer or adjacent layers

Depth First Search

- Each edge goes between, vertices on the same branch
- No cross edges
(1)…
-

