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Announcements

• Reading

– Chapter 3 (Mostly review)

– Start on Chapter 4



Review from Wednesday

• Run time function T(n)

– T(n) is the maximum time to solve an instance of 
size n

• Disregard constant functions

• T(n) is O(f(n))               [T : Z+
 R+]

– If n is sufficiently large, T(n) is bounded by a 
constant multiple of f(n)

– Exist c, n0, such that for n > n0, T(n) < c f(n)



Graph Theory

• G = (V, E)
– V – vertices
– E – edges 

• Undirected graphs
– Edges sets of two vertices {u, v}

• Directed graphs
– Edges ordered pairs (u, v)

• Many other flavors
– Edge / vertices weights
– Parallel edges
– Self loops



Definitions

• Path:  v1, v2, …, vk, with (vi, vi+1) in E
– Simple Path
– Cycle
– Simple Cycle

• Neighborhood
– N(v)

• Distance
• Connectivity

– Undirected
– Directed (strong connectivity)

• Trees
– Rooted
– Unrooted



Graph Representation
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V = { a, b, c, d}

E = { {a, b}, {a, c}, {a, d}, {b, d} }
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Graph search

• Find a path from s to t

S = {s}

while S is not empty

u = Select(S)

visit u

foreach v in N(u)

if v is unvisited

Add(S, v)

Pred[v] = u

if (v = t) then path found



Breadth first search

• Explore vertices in layers

– s in layer 1

– Neighbors of s in layer 2

– Neighbors of layer 2 in layer 3 . . .

s



Key observation

• All edges go between vertices on the same 
layer or adjacent layers
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Bipartite Graphs

• A graph V is bipartite if V can be partitioned 
into V1, V2 such that all edges go between V1

and V2

• A graph is bipartite if it can be two colored



Can this graph be two colored?



Algorithm

• Run BFS

• Color odd layers red, even layers blue

• If no edges between the same layer, the graph 
is bipartite

• If edge between two vertices of the same 
layer, then there is an odd cycle, and the 
graph is not bipartite



Theorem: A graph is bipartite if and only if 
it has no odd cycles



Lemma 1

• If a graph contains an odd cycle, it is not 
bipartite



Lemma 2

• If a BFS tree has an intra-level edge, then the 
graph has an odd length cycle

Intra-level edge: both end points are in the same level



Lemma 3

• If a graph has no odd length cycles, then it is 
bipartite



Graph Search

• Data structure for next vertex to visit 
determines search order



Graph search

Breadth First Search

S = {s}

while S is not empty

u = Dequeue(S)

if u is unvisited

visit u

foreach v in N(u)

Enqueue(S, v)

Depth First Search

S = {s}

while S is not empty

u = Pop(S)

if u is unvisited

visit u

foreach v in N(u)

Push(S, v)



Breadth First Search

• All edges go between vertices on the same 
layer or adjacent layers
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Depth First Search

• Each edge goes between 
vertices on the same 
branch

• No cross edges
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