Announcements

- Guest lecturers Friday and Monday
- Reading
 - Chapter 2.1, 2.2
 - Chapter 3 (Mostly review)
 - Start on Chapter 4
- Homework Guidelines
 - Submit homework with Canvas
 - Submit problems separately
 - Deadline is 1:29 PM on Wednesday
 - Describing an algorithm
 - Clarity is most important
 - Pseudocode generally preferable to just English
 - But sometimes both methods combined work best
 - Prove that your algorithm works
 - A proof is a “convincing argument”
 - Give the run time for your algorithm
 - Justify that the algorithm satisfies the runtime bound
 - You may lose points for style
 - Homework assignments will (probably) be worth the same amount

Five Problems

- Scheduling
- Weighted Scheduling
- Bipartite Matching
- Maximum Independent Set
- Competitive Facility Location

Are there even harder problems?

- Simple game:
 - Players alternating selecting nodes in a graph
 - Score points associated with node
 - Remove nodes neighbors
 - When neither can move, player with most points wins

NP-Completeness

- Hard to find a solution
- Easy to verify a solution once you have one
 - Hamiltonian circuit
 - Clique
 - Subset sum
 - Graph coloring

Competitive Facility Location

- Choose location for a facility
 - Value associated with placement
 - Restriction on placing facilities too close together
 - Competitive placement of facilities
 - E.g., KFC and McDonald's
 - P-Space complete instead of NP-Complete
 - Appear to be much harder
 - No obvious certificate
 - G has a Maximum Independent Set of size 10
 - Player 1 wins by at least 10 points
What does it mean for an algorithm to be efficient?

Definitions of efficiency

- Fast in practice
- Qualitatively better worst case performance than a brute force algorithm

Polynomial time efficiency

- An algorithm is efficient if it has a polynomial run time
- Run time as a function of problem size
 - Run time: count number of instructions executed on an underlying model of computation
 - $T(n)$: maximum run time for all problems of size at most n

Polynomial Time

- Algorithms with polynomial run time have the property that increasing the problem size by a constant factor increases the run time by at most a constant factor (depending on the algorithm)

Why Polynomial Time?

- Generally, polynomial time seems to capture the algorithms which are efficient in practice
- The class of polynomial time algorithms has many good, mathematical properties

Polynomial vs. Exponential Complexity

- Suppose you have an algorithm which takes $n!$ steps on a problem of size n
- If the algorithm takes one second for a problem of size 10, estimate the run time for the following problem sizes:
 - 12
 - 14
 - 16
 - 18
 - 20
Ignoring constant factors

• Express run time as \(O(f(n)) \)
• Emphasize algorithms with slower growth rates
• Fundamental idea in the study of algorithms
• Basis of Tarjan/Hopcroft Turing Award

Why ignore constant factors?

• Constant factors are arbitrary
 – Depend on the implementation
 – Depend on the details of the model
• Determining the constant factors is tedious and provides little insight

Why emphasize growth rates?

• The algorithm with the lower growth rate will be faster for all but a finite number of cases
• Performance is most important for larger problem size
• As memory prices continue to fall, bigger problem sizes become feasible
• Improving growth rate often requires new techniques

Formalizing growth rates

• \(T(n) = O(f(n)) \) \([T : Z^+ \to R^+] \)
 – If \(n \) is sufficiently large, \(T(n) \) is bounded by a constant multiple of \(f(n) \)
 – Exist \(c, n_0 \), such that for \(n > n_0 \), \(T(n) < c f(n) \)
• \(T(n) = O(f(n)) \) will be written as: \(T(n) = O(f(n)) \)
 – Be careful with this notation

Prove \(3n^2 + 5n + 20 \) is \(O(n^2) \)

Let \(c = \)
Let \(n_0 = \)

\(T(n) = O(f(n)) \) if there exist \(c, n_0 \), such that for \(n > n_0 \), \(T(n) < c f(n) \)

Order the following functions in increasing order by their growth rate

a) \(n \log^4 n \)
b) \(2n^2 + 10n \)
c) \(2^{n/100} \)
d) \(1000n + \log^8 n \)
e) \(n^{100} \)
f) \(3^n \)
g) \(1000 \log^{10} n \)
h) \(n^{1/2} \)
Lower bounds

- \(T(n) \) is \(\Omega(f(n)) \)
 - \(T(n) \) is at least a constant multiple of \(f(n) \)
 - There exists an \(n_0 \) and \(\varepsilon > 0 \) such that \(T(n) > \varepsilon f(n) \) for all \(n > n_0 \)
- Warning: definitions of \(\Omega \) vary

- \(T(n) \) is \(\Theta(f(n)) \) if \(T(n) \) is \(O(f(n)) \) and \(T(n) \) is \(\Omega(f(n)) \)

Useful Theorems

- If \(\lim (f(n) / g(n)) = c \) for \(c > 0 \) then \(f(n) = \Theta(g(n)) \)

- If \(f(n) \) is \(O(g(n)) \) and \(g(n) \) is \(O(h(n)) \) then \(f(n) \) is \(O(h(n)) \)

- If \(f(n) \) is \(O(h(n)) \) and \(g(n) \) is \(O(h(n)) \) then \(f(n) + g(n) \) is \(O(h(n)) \)

Ordering growth rates

- For \(b > 1 \) and \(x > 0 \)
 - \(\log^b n \) is \(O(n^x) \)

- For \(r > 1 \) and \(d > 0 \)
 - \(n^d \) is \(O(r^n) \)