Announcements

• Guest lecturers Friday and Monday
• Reading
 – Chapter 2.1, 2.2
 – Chapter 3 (Mostly review)
 – Start on Chapter 4
• Homework Guidelines
 – Submit homework with Canvas
 • Submit problems separately
 • Deadline is 1:29 PM on Wednesday
 – Describing an algorithm
 • Clarity is most important
 • Pseudocode generally preferable to just English
 – But sometimes both methods combined work best
 – Prove that your algorithm works
 • A proof is a “convincing argument”
 – Give the run time for your algorithm
 • Justify that the algorithm satisfies the runtime bound
 – You may lose points for style
 – Homework assignments will (probably) be worth the same amount
Five Problems

Scheduling
Weighted Scheduling
Bipartite Matching
Maximum Independent Set
Competitive Facility Location
NP-Completeness

- Hard to find a solution
- Easy to verify a solution once you have one
 - Hamiltonian circuit
 - Clique
 - Subset sum
 - Graph coloring
Are there even harder problems?

- Simple game:
 - Players alternating selecting nodes in a graph
 - Score points associated with node
 - Remove nodes neighbors
 - When neither can move, player with most points wins
Competitive Facility Location

• Choose location for a facility
 – Value associated with placement
 – Restriction on placing facilities too close together
 – Competitive placement of facilities
 • E.g., KFC and McDonald’s

• P-Space complete instead of NP-Complete
 – Appear to be much harder
 – No obvious certificate
 • G has a Maximum Independent Set of size 10
 • Player 1 wins by at least 10 points
What does it mean for an algorithm to be efficient?
Definitions of efficiency

- Fast in practice
- Qualitatively better worst case performance than a brute force algorithm
Polynomial time efficiency

• An algorithm is efficient if it has a polynomial run time

• Run time as a function of problem size
 – Run time: count number of instructions executed on an underlying model of computation
 – $T(n)$: maximum run time for all problems of size at most n
Polynomial Time

- Algorithms with polynomial run time have the property that increasing the problem size by a constant factor increases the run time by at most a constant factor (depending on the algorithm)
Why Polynomial Time?

• Generally, polynomial time seems to capture the algorithms which are efficient in practice

• The class of polynomial time algorithms has many good, mathematical properties
Polynomial vs. Exponential Complexity

• Suppose you have an algorithm which takes $n!$ steps on a problem of size n
• If the algorithm takes one second for a problem of size 10, estimate the run time for the following problems sizes:

 12 14 16 18 20
Ignoring constant factors

- Express run time as $O(f(n))$
- Emphasize algorithms with slower growth rates
- Fundamental idea in the study of algorithms
- Basis of Tarjan/Hopcroft Turing Award
Why ignore constant factors?

• Constant factors are arbitrary
 – Depend on the implementation
 – Depend on the details of the model

• Determining the constant factors is tedious and provides little insight
Why emphasize growth rates?

- The algorithm with the lower growth rate will be faster for all but a finite number of cases.
- Performance is most important for larger problem size.
- As memory prices continue to fall, bigger problem sizes become feasible.
- Improving growth rate often requires new techniques.
Formalizing growth rates

- $T(n)$ is $O(f(n))$ \hspace{1cm} $[T : \mathbb{Z}^+ \rightarrow \mathbb{R}^+]$
 - If n is sufficiently large, $T(n)$ is bounded by a constant multiple of $f(n)$
 - Exist c, n_0, such that for $n > n_0$, $T(n) < c f(n)$

- $T(n)$ is $O(f(n))$ will be written as: $T(n) = O(f(n))$
 - Be careful with this notation
Prove $3n^2 + 5n + 20$ is $O(n^2)$

Let $c =$

Let $n_0 =$

$T(n)$ is $O(f(n))$ if there exist c, n_0, such that for $n > n_0$, $T(n) < c f(n)$
Order the following functions in increasing order by their growth rate

a) \(n \log^4 n \)
b) \(2n^2 + 10n \)
c) \(2^{n/100} \)
d) \(1000n + \log^8 n \)
e) \(n^{100} \)
f) \(3^n \)
g) \(1000 \log^{10} n \)
h) \(n^{1/2} \)
Lower bounds

- $T(n)$ is $\Omega(f(n))$
 - $T(n)$ is at least a constant multiple of $f(n)$
 - There exists an n_0, and $\varepsilon > 0$ such that $T(n) > \varepsilon f(n)$ for all $n > n_0$

- Warning: definitions of Ω vary

- $T(n)$ is $\Theta(f(n))$ if $T(n)$ is $O(f(n))$ and $T(n)$ is $\Omega(f(n))$
Useful Theorems

• If \(\lim (f(n) / g(n)) = c \) for \(c > 0 \) then
 \(f(n) = \Theta(g(n)) \)

• If \(f(n) \) is \(O(g(n)) \) and \(g(n) \) is \(O(h(n)) \) then
 \(f(n) \) is \(O(h(n)) \)

• If \(f(n) \) is \(O(h(n)) \) and \(g(n) \) is \(O(h(n)) \) then
 \(f(n) + g(n) \) is \(O(h(n)) \)
Ordering growth rates

• For $b > 1$ and $x > 0$
 – $\log^b n$ is $O(n^x)$

• For $r > 1$ and $d > 0$
 – n^d is $O(r^n)$