

- Instance
- Solution
- · Constraints on solution
- Measure of value

no overlap

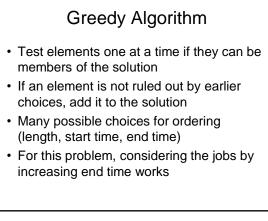
6

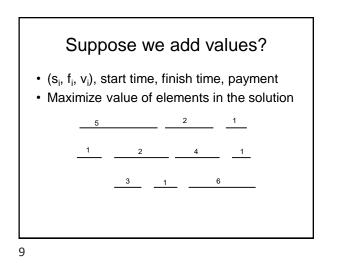
 $(s_1, f_1), (s_2, f_2), \ldots$

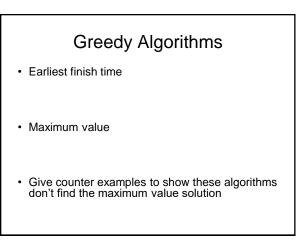
· You have a series of requests for use of the hall:

· Find a set of requests as large as possible with





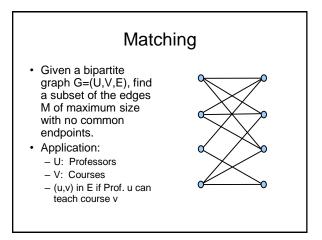


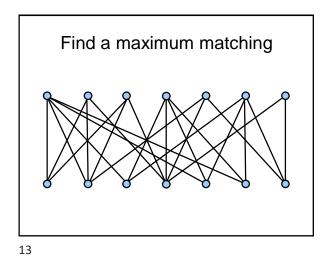


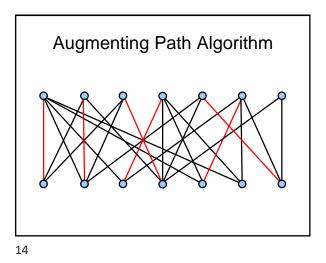
10

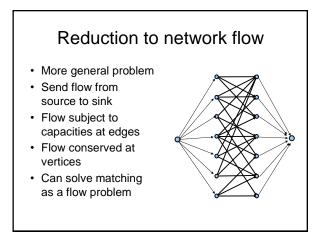
Dynamic Programming

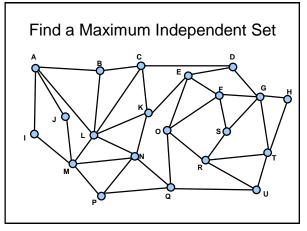
- Requests R_1, R_2, R_3, \ldots
- Assume requests are in increasing order of finish time (f_1 < f_2 < f_3 . . .)
- + Opt_i is the maximum value solution of $\{R_1,\,R_2,\,\ldots,\,R_i\}$ containing R_i
- $Opt_i = Max\{ j | f_j < s_i\}[Opt_j + v_i]$

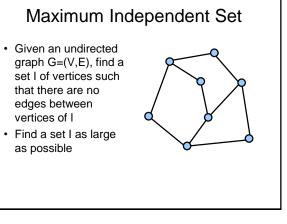


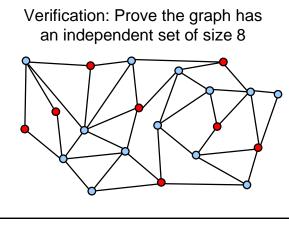












Key characteristic

- · Hard to find a solution
- Easy to verify a solution once you have one
- · Other problems like this
 - Hamiltonian circuit
 - Clique
 - Subset sum
 - Graph coloring

19

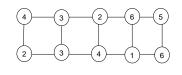
NP-Completeness

- Theory of Hard Problems
- A large number of problems are known to be equivalent
- · Very elegant theory

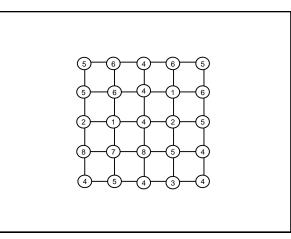
20

Are there even harder problems?

- Simple game:
 - Players alternating selecting nodes in a graph
 - Score points associated with node
 - Remove nodes neighbors
 - When neither can move, player with most points wins



21



22

Competitive Facility Location

- · Choose location for a facility
 - Value associated with placement
 - Restriction on placing facilities too close together
- · Competitive
 - Different companies place facilities
 - E.g., KFC and McDonald's

Complexity theory

- These problems are P-Space complete instead of NP-Complete
 - Appear to be much harder
 - No obvious certificate
 - G has a Maximum Independent Set of size 10
 - Player 1 wins by at least 10 points

Summary

- Scheduling
- Weighted Scheduling
- Bipartite Matching
- Maximum Independent SetCompetitive Scheduling

25