Five Problems

CSE 421
Richard Anderson
Autumn 2019, Lecture 3
Announcements

- **Course website:**
 //courses.cs.washington.edu/courses/cse421/19au/

- **Office hours**
 - Richard Anderson
 - Monday, 2:40 pm - 3:30 pm, CSE 582
 - Wednesday, 2:40 pm - 3:30 pm, CSE 582
Theory of Algorithms

• What is expertise?
• How do experts differ from novices?
Introduction of five problems

• Show the types of problems we will be considering in the class
• Examples of important types of problems
• Similar looking problems with very different characteristics
• Problems
 – Scheduling
 – Weighted Scheduling
 – Bipartite Matching
 – Maximum Independent Set
 – Competitive Facility Location
What is a problem?

- Instance
- Solution
- Constraints on solution
- Measure of value
Problem: Scheduling

• Suppose that you own a banquet hall
• You have a series of requests for use of the hall:
 \((s_1, f_1), (s_2, f_2), \ldots\)

 ______ ________ ___
 ___ ________ ___
 ___ _________ ______
 ___ ___ ________

• Find a set of requests as large as possible with no overlap
What is the largest solution?
Greedy Algorithm

• Test elements one at a time if they can be members of the solution
• If an element is not ruled out by earlier choices, add it to the solution
• Many possible choices for ordering (length, start time, end time)
• For this problem, considering the jobs by increasing end time works
Suppose we add values?

- \((s_i, f_i, v_i)\), start time, finish time, payment
- Maximize value of elements in the solution

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>
Greedy Algorithms

• Earliest finish time

• Maximum value

• Give counter examples to show these algorithms don’t find the maximum value solution
Dynamic Programming

• Requests R_1, R_2, R_3, . . .
• Assume requests are in increasing order of finish time ($f_1 < f_2 < f_3$. . .)
• Opt_i is the maximum value solution of \{R_1, R_2, . . ., R_i\} containing R_i
• $Opt_i = \text{Max}\{ j \mid f_j < s_i \}[Opt_j + v_i]$
Matching

• Given a bipartite graph $G=(U,V,E)$, find a subset of the edges M of maximum size with no common endpoints.

• Application:
 – U: Professors
 – V: Courses
 – (u,v) in E if Prof. u can teach course v
Find a maximum matching
Augmenting Path Algorithm
Reduction to network flow

- More general problem
- Send flow from source to sink
- Flow subject to capacities at edges
- Flow conserved at vertices
- Can solve matching as a flow problem
Maximum Independent Set

• Given an undirected graph $G=(V,E)$, find a set I of vertices such that there are no edges between vertices of I
• Find a set I as large as possible
Find a Maximum Independent Set
Verification: Prove the graph has an independent set of size 8
Key characteristic

• Hard to find a solution
• Easy to verify a solution once you have one
• Other problems like this
 – Hamiltonian circuit
 – Clique
 – Subset sum
 – Graph coloring
NP-Completeness

• Theory of Hard Problems
• A large number of problems are known to be equivalent
• Very elegant theory
Are there even harder problems?

- Simple game:
 - Players alternating selecting nodes in a graph
 - Score points associated with node
 - Remove nodes neighbors
 - When neither can move, player with most points wins
Competitive Facility Location

- Choose location for a facility
 - Value associated with placement
 - Restriction on placing facilities too close together

- Competitive
 - Different companies place facilities
 - E.g., KFC and McDonald’s
Complexity theory

• These problems are P-Space complete instead of NP-Complete
 – Appear to be much harder
 – No obvious certificate
 • G has a Maximum Independent Set of size 10
 • Player 1 wins by at least 10 points
Summary

• Scheduling
• Weighted Scheduling
• Bipartite Matching
• Maximum Independent Set
• Competitive Scheduling