
9/27/2019

1

CSE 421

Algorithms

Richard Anderson

Autumn 2019

Lecture 2

Announcements

• It’s on the web.

• Homework due Wednesdays

– HW 1, Due Wednesday, October 2, 1:30 pm

– It’s on the web

– Submit solutions on canvas

– pay attention to making explanations clear

and understandable

• You should be on the course mailing list

– But it will probably go to your uw.edu account

Course Mechanics

• Homework
– Due Wednesdays

– About 5 problems, sometimes programming

– Target: 1 week turnaround on grading

• Exams (In class)
– Midterm, Wednesday, October 30, 2019

– Final, Monday, December 9, 2:30-4:20 pm

• Approximate grade weighting
– HW: 50, MT: 15, Final: 35

• Course web
– Slides, Handouts

• Instructor Office hours (CSE2 344):
– Monday 2:40-3:30, Wednesday 2:40-3:30

Stable Matching: Formal

Problem
• Input

– Preference lists for m1, m2, …, mn

– Preference lists for w1, w2, …, wn

• Output

– Perfect matching M satisfying stability

property (e.g., no instabilities) :

For all m’, m’’, w’, w’’

If (m’, w’)  M and (m’’, w’’)  M then

(m’ prefers w’ to w’’) or (w’’ prefers m’’ to m’)

Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts

If w is matched to m2

If w prefers m to m2, w accepts m, dumping m2

If w prefers m2 to m, w rejects m

Unmatched m proposes to the highest w on

its preference list that it has not already

proposed to

Algorithm

Initially all m in M and w in W are free

While there is a free m

w highest on m’s list that m has not proposed to

if w is free, then match (m, w)

else

suppose (m2, w) is matched

if w prefers m to m2

unmatch (m2, w)

match (m, w)

9/27/2019

2

Example

m1: w1 w2 w3

m2: w1 w3 w2

m3: w1 w2 w3

w1: m2 m3 m1

w2: m3 m1 m2

w3: m3 m1 m2

m1

m2 w2

w1

m3 w3

Order: m1, m2, m3, m1, m3, m1

Does this work?

• Does it terminate?

• Is the result a stable matching?

• Begin by identifying invariants and

measures of progress

– m’s proposals get worse (have higher m-rank)

– Once w is matched, w stays matched

– w’s partners get better (have lower w-rank)

Claim: If an m reaches the end of

its list, then all the w’s are matched

Claim: The algorithm stops in at

most n2 steps

When the algorithms halts, every w

is matched

Hence, the algorithm finds a perfect
matching

The resulting matching is stable

Suppose

(m1, w1)  M, (m2, w2)  M

m1 prefers w2 to w1

How could this happen?

m1 w1

m2 w2

9/27/2019

3

Result

• Simple, O(n2) algorithm to compute a

stable matching

• Corollary

– A stable matching always exists

A closer look

Stable matchings are not necessarily fair

m1: w1 w2 w3

m2: w2 w3 w1

m3: w3 w1 w2

w1: m2 m3 m1

w2: m3 m1 m2

w3: m1 m2 m3

m1

m2

m3

w1

w2

w3

How many stable matchings can you find?

Algorithm under specified

• Many different ways of picking m’s to propose

• Surprising result

– All orderings of picking free m’s give the same result

• Proving this type of result

– Reordering argument

– Prove algorithm is computing something mores

specific

• Show property of the solution – so it computes a specific

stable matching

M-rank and W-rank of matching

• m-rank: position of
matching w in
preference list

• M-rank: sum of
m-ranks

• w-rank: position of
matching m in
preference list

• W-rank: sum of
w-ranks

m1: w1 w2 w3

m2: w1 w3 w2

m3: w1 w2 w3

w1: m2 m3 m1

w2: m3 m1 m2

w3: m3 m1 m2

m1 w1

m2 w2

m3 w3

What is the M-rank?

What is the W-rank?

Suppose there are n m’s, and n w’s

• What is the minimum possible M-rank?

• What is the maximum possible M-rank?

• Suppose each m is matched with a

random w, what is the expected M-rank?

Random Preferences

Suppose that the preferences are completely

random

If there are n m’s and n w’s, what is the expected

value of the M-rank and the W-rank when the

proposal algorithm computes a stable matching?

m1: w8 w3 w1 w5 w9 w2 w4 w6 w7 w10

m2: w7 w10 w1 w9 w3 w4 w8 w2 w5 w6

…

w1: m1 m4 m9 m5 m10 m3 m2 m6 m8 m7

w2: m5 m8 m1 m3 m2 m7 m9 m10 m4 m6

…

9/27/2019

4

Stable Matching Algorithms

• M Proposal Algorithm

– Iterate over all m’s until all are matched

• W Proposal Algorithm

– Change the role of m’s and w’s

– Iterate over all w’s until all are matched

Best choices for one side may be

bad for the other

Design a configuration for

problem of size 4:

M proposal algorithm:

All m’s get first choice, all w’s

get last choice

W proposal algorithm:

All w’s get first choice, all m’s

get last choice

m1:

m2:

m3:

m4:

w1:

w2:

w3:

w4:

But there is a stable second choice

Design a configuration for

problem of size 4:

M proposal algorithm:

All m’s get first choice, all w’s

get last choice

W proposal algorithm:

All w’s get first choice, all m’s

get last choice

There is a stable matching

where everyone gets their

second choice

m1:

m2:

m3:

m4:

w1:

w2:

w3:

w4:

What is the run time of the Stable

Matching Algorithm?

Initially all m in M and w in W are free

While there is a free m

w highest on m’s list that m has not proposed to

if w is free, then match (m, w)

else

suppose (m2, w) is matched

if w prefers m to m2

unmatch (m2, w)

match (m, w)

Executed at most n2 times

O(1) time per iteration

• Find free m

• Find next available w

• If w is matched, determine m2

• Test if w prefer m to m2

• Update matching

What does it mean for an algorithm

to be efficient?

9/27/2019

5

Key ideas

• Formalizing real world problem
– Model: graph and preference lists

– Mechanism: stability condition

• Specification of algorithm with a natural
operation
– Proposal

• Establishing termination of process through
invariants and progress measure

• Under specification of algorithm

• Establishing uniqueness of solution

