

## CSE 421 Algorithms

Richard Anderson Autumn 2019 Lecture 2

#### Announcements

- It's on the web.
- Homework due Wednesdays
  - HW 1, Due Wednesday, October 2, 1:30 pm
  - It's on the web
  - Submit solutions on canvas
  - pay attention to making explanations clear and understandable
- You should be on the course mailing list
   But it will probably go to your uw.edu account

# **Course Mechanics**

- Homework
  - Due Wednesdays
  - About 5 problems, sometimes programming
  - Target: 1 week turnaround on grading
- Exams (In class)
  - Midterm, Wednesday, October 30, 2019
  - Final, Monday, December 9, 2:30-4:20 pm
- Approximate grade weighting
  - HW: 50, MT: 15, Final: 35
- Course web
  - Slides, Handouts
- Instructor Office hours (CSE2 344):
  - Monday 2:40-3:30, Wednesday 2:40-3:30







ALGORITHM DESIGN



# Stable Matching: Formal Problem

- Input
  - Preference lists for  $m_1, m_2, ..., m_n$
  - Preference lists for  $w_1, w_2, ..., w_n$
- Output
  - Perfect matching M satisfying stability property (e.g., no instabilities) :

```
For all m', m'', w', w''

If (m', w') \in M and (m'', w'') \in M then

(m' prefers w' to w'') or (w'' prefers m'' to m')
```

### Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts

If w is matched to m<sub>2</sub>

If w prefers m to  $m_2$ , w accepts m, dumping  $m_2$ 

If w prefers  $m_2$  to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

# Algorithm

Initially all m in M and w in W are free While there is a free m

w highest on m's list that m has not proposed to if w is free, then match (m, w)

else

suppose  $(m_2, w)$  is matched if w prefers m to  $m_2$ unmatch  $(m_2, w)$ match (m, w)

#### Example

 $m_1: w_1 w_2 w_3$ m<sub>2</sub>: w<sub>1</sub> w<sub>3</sub> w<sub>2</sub>  $m_3$ :  $w_1 w_2 w_3$ w<sub>1</sub>: m<sub>2</sub> m<sub>3</sub> m<sub>1</sub> w<sub>2</sub>: m<sub>3</sub> m<sub>1</sub> m<sub>2</sub>  $W_3: m_3 m_1 m_2$ 



Order:  $m_1, m_2, m_3, m_1, m_3, m_1$ 

### Does this work?

- Does it terminate?
- Is the result a stable matching?

- Begin by identifying invariants and measures of progress
  - m's proposals get worse (have higher m-rank)
  - Once w is matched, w stays matched
  - w's partners get better (have lower w-rank)

Claim: If an m reaches the end of its list, then all the w's are matched

# Claim: The algorithm stops in at most n<sup>2</sup> steps

# When the algorithms halts, every w is matched

# Hence, the algorithm finds a perfect matching

### The resulting matching is stable

Suppose

 $(m_1, w_1) \in M, (m_2, w_2) \in M$ m<sub>1</sub> prefers w<sub>2</sub> to w<sub>1</sub>



How could this happen?

## Result

- Simple, O(n<sup>2</sup>) algorithm to compute a stable matching
- Corollary
  - A stable matching always exists

#### A closer look

Stable matchings are not necessarily fair



How many stable matchings can you find?

# Algorithm under specified

- Many different ways of picking m's to propose
- Surprising result

- All orderings of picking free m's give the same result

- Proving this type of result
  - Reordering argument
  - Prove algorithm is computing something mores specific
    - Show property of the solution so it computes a specific stable matching

# M-rank and W-rank of matching

- m-rank: position of matching w in preference list
- M-rank: sum of m-ranks
- w-rank: position of matching m in preference list
- W-rank: sum of w-ranks



What is the M-rank?

What is the W-rank?

#### Suppose there are n m's, and n w's

• What is the minimum possible M-rank?

• What is the maximum possible M-rank?

 Suppose each m is matched with a random w, what is the expected M-rank?

#### Random Preferences

Suppose that the preferences are completely random

. . .

If there are n m's and n w's, what is the expected value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?

# Stable Matching Algorithms

- M Proposal Algorithm
  - Iterate over all m's until all are matched
- W Proposal Algorithm
  - Change the role of m's and w's
  - Iterate over all w's until all are matched

# Best choices for one side may be bad for the other

| Design a configuration for                        | m <sub>1</sub> : |
|---------------------------------------------------|------------------|
| problem of size 4:                                | m <sub>2</sub> : |
| M proposal algorithm:                             |                  |
| All m's get first choice, all w's get last choice | m <sub>3</sub> : |
| W proposal algorithm:                             | m <sub>4</sub> : |
| All w's get first choice, all m's                 |                  |
| get last choice                                   | w <sub>1</sub> : |
|                                                   | W <sub>2</sub> : |

W<sub>3</sub>:

#### But there is a stable second choice

| Design a configuration for problem of size 4:        | m <sub>1</sub> : |
|------------------------------------------------------|------------------|
| -                                                    | m <sub>2</sub> : |
| M proposal algorithm:                                | m <sub>3</sub> : |
| All m's get first choice, all w's<br>get last choice | m₄:              |
| W proposal algorithm:                                | •••4•            |
| All w's get first choice, all m's<br>get last choice | w <sub>1</sub> : |
| There is a stable matching where everyone gets their | W <sub>2</sub> : |
| second choice                                        | W <sub>3</sub> : |

# What is the run time of the Stable Matching Algorithm?

Initially all m in M and w in W are free While there is a free m Executed at most n<sup>2</sup> times w highest on m's list that m has not proposed to if w is free, then match (m, w) else suppose (m<sub>2</sub>, w) is matched if w prefers m to m<sub>2</sub> unmatch (m<sub>2</sub>, w) match (m, w)

# O(1) time per iteration

- Find free m
- Find next available w
- If w is matched, determine m<sub>2</sub>
- Test if w prefer m to m<sub>2</sub>
- Update matching

# What does it mean for an algorithm to be efficient?

# Key ideas

- Formalizing real world problem
  - Model: graph and preference lists
  - Mechanism: stability condition
- Specification of algorithm with a natural operation
  - Proposal
- Establishing termination of process through invariants and progress measure
- Under specification of algorithm
- Establishing uniqueness of solution