Announcements

• It’s on the web.
• Homework due Wednesdays
 – HW 1, Due Wednesday, October 2, 1:30 pm
 – It’s on the web
 – Submit solutions on canvas
 – pay attention to making explanations clear and understandable
• You should be on the course mailing list
 – But it will probably go to your uw.edu account
Course Mechanics

• Homework
 – Due Wednesdays
 – About 5 problems, sometimes programming
 – Target: 1 week turnaround on grading
• Exams (In class)
 – Midterm, Wednesday, October 30, 2019
 – Final, Monday, December 9, 2:30-4:20 pm
• Approximate grade weighting
 – HW: 50, MT: 15, Final: 35
• Course web
 – Slides, Handouts
• Instructor Office hours (CSE2 344):
 – Monday 2:40-3:30, Wednesday 2:40-3:30
Stable Matching: Formal Problem

- **Input**
 - Preference lists for \(m_1, m_2, \ldots, m_n \)
 - Preference lists for \(w_1, w_2, \ldots, w_n \)

- **Output**
 - Perfect matching \(M \) satisfying stability property (e.g., no instabilities):

 \[
 \text{For all } m', m'', w', w''\]
 \[
 \text{If } (m', w') \in M \text{ and } (m'', w'') \in M \text{ then}\]
 \[
 (m' \text{ prefers } w' \text{ to } w'') \text{ or } (w'' \text{ prefers } m'' \text{ to } m')
 \]
Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts
If w is matched to m_2
 If w prefers m to m_2, w accepts m, dumping m_2
 If w prefers m_2 to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to
Algorithm

Initially all m in M and w in W are free
While there is a free m
 w highest on m’s list that m has not proposed to
 if w is free, then match (m, w)
 else
 suppose (m₂, w) is matched
 if w prefers m to m₂
 unmatch (m₂, w)
 match (m, w)
Example

\[m_1 : w_1 \ w_2 \ w_3 \]
\[m_2 : w_1 \ w_3 \ w_2 \]
\[m_3 : w_1 \ w_2 \ w_3 \]
\[w_1 : m_2 \ m_3 \ m_1 \]
\[w_2 : m_3 \ m_1 \ m_2 \]
\[w_3 : m_3 \ m_1 \ m_2 \]

Order: \(m_1, \ m_2, \ m_3, \ m_1, \ m_3, \ m_1 \)
Does this work?

- Does it terminate?
- Is the result a stable matching?

- Begin by identifying invariants and measures of progress
 - m’s proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w’s partners get better (have lower w-rank)
Claim: If an m reaches the end of its list, then all the w’s are matched
Claim: The algorithm stops in at most n^2 steps
When the algorithms halts, every w is matched

Hence, the algorithm finds a perfect matching
The resulting matching is stable

Suppose

\[(m_1, w_1) \in M, (m_2, w_2) \in M\]

\[m_1\] prefers \[w_2\] to \[w_1\]

How could this happen?
Result

• Simple, $O(n^2)$ algorithm to compute a stable matching
• Corollary
 – A stable matching always exists
A closer look

Stable matchings are not necessarily fair

\[\begin{align*}
 m_1 &: w_1 \ w_2 \ w_3 \\
 m_2 &: w_2 \ w_3 \ w_1 \\
 m_3 &: w_3 \ w_1 \ w_2 \\
 w_1 &: m_2 \ m_3 \ m_1 \\
 w_2 &: m_3 \ m_1 \ m_2 \\
 w_3 &: m_1 \ m_2 \ m_3
\end{align*} \]

How many stable matchings can you find?
Algorithm under specified

- Many different ways of picking m’s to propose

- Surprising result
 - All orderings of picking free m’s give the same result

- Proving this type of result
 - Reordering argument
 - Prove algorithm is computing something more specific
 - Show property of the solution – so it computes a specific stable matching
M-rank and W-rank of matching

- m-rank: position of matching w in preference list
- M-rank: sum of m-ranks
- w-rank: position of matching m in preference list
- W-rank: sum of w-ranks

\[
\begin{align*}
\text{m}_1 &: w_1 \ w_2 \ w_3 \\
\text{m}_2 &: w_1 \ w_3 \ w_2 \\
\text{m}_3 &: w_1 \ w_2 \ w_3 \\
\text{w}_1 &: m_2 \ m_3 \ m_1 \\
\text{w}_2 &: m_3 \ m_1 \ m_2 \\
\text{w}_3 &: m_3 \ m_1 \ m_2
\end{align*}
\]

What is the M-rank?
What is the W-rank?
Suppose there are n m’s, and n w’s

- What is the minimum possible M-rank?
- What is the maximum possible M-rank?
- Suppose each m is matched with a random w, what is the expected M-rank?
Random Preferences

Suppose that the preferences are completely random

\[m_1: w_8 \; w_3 \; w_1 \; w_5 \; w_9 \; w_2 \; w_4 \; w_6 \; w_7 \; w_{10} \]
\[m_2: w_7 \; w_{10} \; w_1 \; w_9 \; w_3 \; w_4 \; w_8 \; w_2 \; w_5 \; w_6 \]
\[\vdots \]
\[w_1: m_1 \; m_4 \; m_9 \; m_5 \; m_{10} \; m_3 \; m_2 \; m_6 \; m_8 \; m_7 \]
\[w_2: m_5 \; m_8 \; m_1 \; m_3 \; m_2 \; m_7 \; m_9 \; m_{10} \; m_4 \; m_6 \]
\[\vdots \]

If there are n m’s and n w’s, what is the expected value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?
Stable Matching Algorithms

• M Proposal Algorithm
 – Iterate over all m’s until all are matched

• W Proposal Algorithm
 – Change the role of m’s and w’s
 – Iterate over all w’s until all are matched
Best choices for one side may be bad for the other.

Design a configuration for problem of size 4:

M proposal algorithm:
All m’s get first choice, all w’s get last choice

W proposal algorithm:
All w’s get first choice, all m’s get last choice
But there is a stable second choice

Design a configuration for problem of size 4:

M proposal algorithm:
 All m’s get first choice, all w’s get last choice

W proposal algorithm:
 All w’s get first choice, all m’s get last choice

There is a stable matching where everyone gets their second choice
What is the run time of the Stable Matching Algorithm?

Initially all \(m \) in \(M \) and \(w \) in \(W \) are free
While there is a free \(m \)
 \(w \) highest on \(m \)'s list that \(m \) has not proposed to
 if \(w \) is free, then match \((m, w)\)
 else
 suppose \((m_2, w)\) is matched
 if \(w \) prefers \(m \) to \(m_2 \)
 unmatch \((m_2, w)\)
 match \((m, w)\)

Executed at most \(n^2 \) times
O(1) time per iteration

- Find free m
- Find next available w
- If w is matched, determine m_2
- Test if w prefer m to m_2
- Update matching
What does it mean for an algorithm to be efficient?
Key ideas

• Formalizing real world problem
 – Model: graph and preference lists
 – Mechanism: stability condition

• Specification of algorithm with a natural operation
 – Proposal

• Establishing termination of process through invariants and progress measure

• Under specification of algorithm

• Establishing uniqueness of solution