Homework 2, Due Wednesday, October 9, 1:29 pm, 2019

Turnin instructions: Electronics submission on canvas using the CSE 421 canvas site. Each numbered problem is to be turned in as a separate PDF.

Problem 1 (10 points):

Order the following functions in increasing order by their growth rate:

1. n^{3}
2. $(\log n)^{\log n}$
3. $n^{\sqrt{\log n}}$
4. $2^{n / 10}$

Explain how you determined the ordering.
Problem 2 (10 points):
Prove that $4 n^{2}+3 n \log n+6 n+20 \log ^{2} n+11$ is $O\left(n^{2}\right)$.
Problem 3 (10 points):
Suppose that $f(n)$ is $O(r(n))$ and $g(n)$ is $O(s(n))$. Let $h(n)=f(n) g(n)$ and $t(n)=r(n) s(n)$. Prove that $h(n)$ is $O(t(n))$.

Problem 4 (10 points):

Give an algorithm for efficiently computing the number of shortest paths in an undirected graph between a a pair of vertices. Suppose that you have an undirected graph $G=(V, E)$ and a pair of vertices v and w. Your algorithm should compute the number of shortest $v-w$ paths in G. Since this graph is unweighted, the length of a path is defined to be the number of edges in the path. Your algorithm should have run time $O(n+m)$ for a graph of n vertices and m edges.

You should explain why your algorithm is correct and justify the run time of the algorithm.

Problem 5 (10 points):

The diameter of an undirected graph is the maximum distance between any pair of vertices. If a graph is not connected, its diameter is infinite. Let G be an n node undirected graph, where n is even. Suppose that every vertex has degree at least $n / 2$. Prove that G has diameter at most 2 .

Problem 6 (10 points):

Given an undirected graph $G=(V, E)$ with n vertices such that the degree of every vertex of G is at most k. Show that we can color the edges of G with at most $2 k-1$ colors such that any pair of edges e and f which are incident to the same vertex have distinct colors.

