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CSE 421, Autumn 2019

Homework 1, Due Wednesday, October 2, 1:29 pm, 2019

Turnin instructions: Electronic submission on canvas using the CSE 421 canvas site. Each numbered
problem is to be turned in as a separate PDF, with subparts submitted together. E.g., Problems
2a and 2b should be turned in together.

Problem 1 (15 points):

Let I = (M,W ) be an instance of the stable matching problem. Suppose that the preference lists
of all m ∈M are identical, so without loss of generality, mi has the preference list [w1, w2, . . . , wn].
Prove that there is a unique solution to this instance.

Problem 2 (15 points):

Prove that the stable matching problem may have an exponential number of solutions. To be
specific, show that for every n, there is an instance of stable matching on sets M and W with
|M | = |W | = n where there are at least cn stable matchings, for some c > 1. (There is a solution
with c =

√
2, but you can use a different constant.)

Programming Problem 3a (15 points):

Implement the stable matching algorithm. Write an input generator which creates completely
random preference lists, so that each M has a random permutation of the W ’s for preference, and
vice-versa. The goodness of a match for an individual can be measured by the position in the
preference list of the match. The overall goodness for the M ’s would be the sum over each m, of
his rank for the matching w. Similarly, the goodness for the W ’s can be defined.
You are free to write in any programming language you like. The quality of your algorithm may
be graded (but you can use the one in the book), but the actual quality of the code will not be
graded. The expectation is that you write the algorithmic code yourself - but you can use other
code or libraries for supporting operations. You may use a library to generate random permutations
(although this can be done as a four-line algorithm.) Submit your code as a PDF.
Make sure that you test your algorithm on small instance sizes, where you are able to check results
by hand.

Programming Problem 3b (15 points) :

As the size of the problem increases - how does the goodness change for M and W? (It is probably
easiest to normalize by dividing the goodness by n, the number of pairs.) Submit a write up about
how the goodness varies with the input size based on your experiments. Can you determine the
asymptotic growth rate? Is the result better for the M ’s or W ’s? You will probably need to run
your algorithm on inputs with n at least 1,000 to get interesting results.



Problem 4 (20 points):

Gale and Shapley published their paper on the stable marriage problem in 1962; but a version of
their algorithm had already been in use for ten years by the National Resident Matching Program,
for the problem of assigning medical residents to hospitals.

Basically, the situation was the following: There were m hospitals, each with a certain number
of available positions for hiring residents. There were n medical students graduating in a given
year, each interested in joining one of the hospitals. Each hospital had a ranking of the students in
order of preference, and each student had a ranking of the hospitals in order of preference. We will
assume that there were more students graduating than there were slots available in the m hospitals.

The interest, naturally, was in finding a way of assigning each student to at most one hospital, in
such a way that all available positions in all hospitals were filled. (Since we are assuming a surplus
of students, there would be some students who do not get assigned to any hospital.) We say that
an assignment of students to hospitals is stable if neither of the following situations arises:

• First type of instability: There are students s and s′, and a hospital h, so that s is assigned
to h and s′ is assigned to no hospital, and h prefers s′ to s.

• Second type of instability: There are students s and s′, and hospitals h and h′, so that:

– s is assigned to h, and

– s′ is assigned to h′, and

– h prefers s′ to s, and s′ prefers h to h′.

So we basically have the stable marriage problem from class, except that (i) hospitals generally
want more than one resident, and (ii) there is a surplus of medical students. Show that there is
always a stable assignment of students to hospitals, and give an polynomial time algorithm to find
one.

Problem 5 (20 points):

(From text, page 28, exercise 8.) For this problem, we explore the issue of truthfulness in the Gale-
Shapley algorithm for Stable Matching. Can a participant improve its outcome by lying about its
preferences. Consider w ∈W . Suppose w prefers m to m′, but m and m′ are low on w’s preference
list. Is it possible that by switching the order of m and m′ on w’s preference list, w achieves a
better outcome, e.g., is matched with an m′′ higher on the preference list than the one if the actual
order was used.

Resolve this question in one of two ways:

(a) Give a proof that, for any set of preference lists, switching the order of a pair on the list
cannot improve a w’s partner in the Gale-Shapley algorithm; or

(b) Give an example of a set of preference lists for which there is a switch that would improve
the partner of a w who switched preferences.


