NAME:

CSE 421
Introduction to Algorithms
Sample Midterm Exam Fall 2014

DIRECTIONS:

Answer the problems on the exam paper.
You are allowed one cheat sheet.

Justify all answers with proofs, unless the facts you
need have been proved in class or in the book.

If you need extra space use the back of a page
You have 50 minutes to complete the exam.

Please do not turn the exam over until you are in-
structed to do so.

Good Luck!

1 /25
2 /25
3 /25
4 /25
| Total | /100 |

1. (25 points, 5 each) For each of the following problems answer True or False and BRIEFLY
JUSTIFY you answer.

(a) n*t = 0O(n?logn).
False. n%! grows faster than logn, as we discussed in class.

(b) There is a polynomial time algorithm for deciding whether a graph is bipartite or not.
True. We can use breadth first search to check whether a graph is bipartite or not.

(c) If an undirected connected graph G has a unique heaviest weight edge e, then e cannot
be part of any minimum spanning tree.
False. If the edge is the only edge that connects a particular vertex, it must be included
in every spanning tree.

(d) If all edges in a graph have weight 1, then there is an O(m + n) time algorithm to find
the minimum spanning tree, where m is the number of edges and n is the number of
vertices.

True. In this case all spanning trees have the same weight. So we can use breadth first
search to find a spanning tree.

(e) If T(n) < 10T (n/3) +n3, T(1) = 1, then T'(n) = O(n?3). True. By the master theorem,
since 33 > 10, T'(n) = O(n?).

2. (25 points) A perfect matching of an undirected graph on 2n vertices is a matching of size
n, namely n edges such that each vertex is part of exactly one edge. Give a polynomial time
algorithm that takes a tree on 2n vertices as input and finds a perfect matching in the tree,
if such a matching exists. HINT: Give a greedy algorithm that tries to match a leaf in each
step. Solution: To find the perfect matching, proceed as follows:

Input: A tree T.

Result: A perfect matching in the tree, if one exists.

Set M to be an empty set;

while T' has vertices in it do

if T has a vertex ¢ with deg(¢) =1 then
Let p be the neighbor of ¢ ;
Add {p, ¢} to M,
Delete the vertices p, ¢ from T7;

else

‘ Output “no matching”;
end

end
Output M;

Algorithm 1: Perfect Matching Algorithm for Trees

Analysis: First we show, if the above algorithm outputs M, M is a matching of size n between
the vertices such that each vertex is part of exactly one edge. This is because whenever we
match two vertices p, £ we immediately delete them. Furthermore, the algorithm successfully
outputs M when T has no more vertices. Since T has originally 2n vertices, the latter means
|M| = n.

Coversely, suppose the above algorithm outputs “no matching” when there exists a matching
M* of size n. But observe that every vertex of degree 1 throughout the algorithm must
be matched to its unique neighbor. Therefore, we haven’t made any incorrect decisions.
Furthermore, we know that every tree has a leaf, so the above algorithm will find a leaf p and
match it in the only way possible. If this causes another neighbor of p to lose all of its edges,
then there can be no perfect matching.

Runtime: All steps are polynomial time, so the runtime is polynomial time.

3. (25 points) A contiguous subsequence of a list S is a subsequence made up of consecutive
elements of S. For instance, if S is

9,15, -30,10, -5, 40, 10,

then 15, —30,10 is a contiguous subsequence but 5,15,40 is not. Give a polynomial time
algorithm that takes n numbers as input, and outputs the contiguous sequence of maximum
sum. HINT: Let OPT(i) be maximum sum of all contiguous sequences that end at i, and
show how to compute OPT (i) for every value of i.

Solution: We solved this problem in class; so you can just say it is solved in class. Also, note
that the problem only asks for a polynomial time algorithm. So, one can in principal return
the simplest solution: For all interval [z;, ..., z;] sum up all the numbers in the interval and
take the maximum over all possible intervals.

Since, there are at most n? many intervals and we can compute the sum of numbers in each
interval in time O(n) the above algorithm runs in time O(n?) which is a polynomial in n.

4. (25 points) Given sorted array of n distinct integers, arranged in increasing order A[1, n], you
want to find out whether there is an index ¢ for which A[i] = 4. Give an algorithm that runs
in time O(logn) for this problem. HINT: Consider the algorithm that compares A[[n/2]]
and [n/2], and uses that comparison to recurse on either the first half or the second half of
the array. Prove that if A[[n/2]] > [n/2], such an ¢ cannot be in last n — [n/2] coordinates,
and if A[[n/2]] < [n/2], then such an ¢ cannot be in the first [n/2] coordinates. Solution:

Input: A sorted array A
Result: i such that A[i] = i, if such an 7 exists
Let k=1, =n;
while j —k > 1 do
Set £ = [ZEE];
if A[/] =¢ then
| Output 4.
else if A[/] > (then Set j = ¢;

else Set k = /;
end
if Ak] =k then
‘ Output k;

else if A[j] = j then Output j ;

i
else Output “No such index”;

I

Algorithm 2: Binary Search

Analysis: If A[¢] > ¢, then it must be the case that any index i with A[i] =i is in the interval
[k, £]. This is because for all j > ¢,

Al > — L+ Al > j— L+ L=
In the first inequality we have used that A is sorted array of distinct integers and in the

second one we used that A[(] > /.

Similarly, if A[¢] < ¢, it must be the case that the index we want is in the interval [¢, j]. Thus
the above algorithm correctly halves the size of the interval we are looking for, in each run of
the while loop.

Runtime: Because each time we halve the size of the interval we are looking for, the runtime
satisfies: T'(n) < T'(n/2) + O(1). Thus T'(n) < O(logn).

