Claim: Suppose \(y \) is discovered during \(\text{DFS}(x) \). Then \(y \) is a descendant of \(x \).

Lemma: Say \(T \) is \(\text{DFS}(S) \). Suppose \(\{x,y\} \in T \). (\(\{x,y\} \in E \)).

Then \(x \) is an ancestor of \(y \) or vice versa.

Pf. W.L.O.G. assume \(x \) is discovered first.

We call \(\text{DFS}(x) \). (at this point \(y \) is undiscovered).

By prev. claim enough to show \(y \) is discovered during \(\text{DFS}(x) \).

By the time the For loop of \(\text{DFS}(x) \) gets \(y \), \(y \) must be discovered (o.w. edge \(\{x,y\} \in T \) and it is a contradiction).

So \(y \) is discovered during \(\text{DFS}(x) \).

For all plan graphs

\[m \leq 3n - 4 \]

Hint: Any plan has a vertex \(v \) \(\deg(v) \leq 5 \).

Then, use induction.

Claim: Any plan graph has a vertex \(v \): \(\deg(v) \leq 5 \).

\[\sum \deg(v) = 2m \leq 6n - 8 \]

\[\Rightarrow \exists v: \deg(v) \leq 6 \]

II. A plan graph \(G \) with \(n - 1 \) vertices, color with \(6 \) colors.

IS. Give plan graph \(G \) with \(n \) vertices.
\(f \) of degree \(\leq 5 \) remove \(v \). \(G - \{ v \} \) is planar because you can draw on plan.

So by IH we can color \(G - \{ v \} \).

We color \(v \) with a color not appear in its neighbors.

We can do that by \(d(y(v)) \leq 5 \).

Claim: If \(G \) has a topological order then it is a DAG.

pf.

\[
\begin{align*}
1 & \rightarrow 2 \quad \Downarrow \\
& \quad \downarrow \\
& \quad v
\end{align*}
\]