In class we discussed a pseudo-code of BFS(s); Here I have modified the code to maintain the level of each vertex in the BFS tree, in other words, the array L[] will have the shortest path distance from s to u for any vertex u in the connected component of s.

Algorithm 1: Computes the shortest path distance from s

Next, we write a code to determine the connected components of a graph. When we call the function Connected-Components, it will construct an array A such that for all vertices v in the same connected component A[v] is the same.

For example, consider the following graph; it has 3 connected components: \{1, 3, 4\}, \{5\}, \{2, 6\}. If we run the code on the following graph, we are going to make 3 BFS calls:

3) Then we call BFS(5) which visits the vertex 5 and so we get \(A[5] = 3\).

Note that we are not going to call BFS(3), BFS(4) and BFS(6). Because by the time the main loop gets to vertices 3, 4, and 6 they are already fully-explored.

Also, observe that after running this code, for any pair of vertices \(u, v\), there is a path connecting \(u\) to \(v\) in \(G\) if and only if \(A[u] = A[v]\).
Function BFS(s,c)

mark s "discovered"
queue = { s }
A[s]=c

while queue not empty do
 u = remove_first(queue)
 for each edge \{u, x\} do
 if x is undiscovered then
 mark x discovered
 append x on queue
 A[x]=c;
 end
 end
 mark u fully-explored
end

Function Connected-Components

Initialize: mark all vertices “undiscovered” and set c = 1
for v = 1 → n do
 if v is undiscovered then
 BFS(v,c)
 c=c+1
 end
end

Algorithm 2: Computes the Connected Components of a Graph.