
CSE 421

Connected Components / Bipartite

Graphs / DFS

Shayan Oveis Gharan

1

An Advice on Problem Solving

If possible, try not to use arguments of the following type in
proofs:

• The Best case is ….

• The worst case is ….

• The slowest running time for my algorithm is ….

These arguments need rigorous justification, and they are
usually the main reason that your proofs can become
wrong, or unjustified.

2

Properties of BFS

• BFS(s) visits a vertex v if and only if there is a path from
s to v

• Edges into then-undiscovered vertices define a tree –
the “Breadth First spanning tree” of G

• Level 𝑖 in the tree are exactly all vertices v s.t., the
shortest path (in G) from the root s to v is of length 𝑖

• All nontree edges join vertices on the same or adjacent
levels of the tree

3

4

BFS Application: Shortest Paths

BFS Tree gives shortest

paths from 1 to all vertices

0

1

2

3

4
All edges connect same

or adjacent levels

Properties of BFS

Claim: All nontree edges join vertices on the same or
adjacent levels of the tree

Pf: Consider an edge {x,y}

Say x is first discovered and it is addedto level 𝑖.
We show y will be at level 𝑖 or 𝑖 + 1

This is because when vertices incident to x are considered
in the loop, if y is still undiscovered, it will be discovered
and added to level 𝑖 + 1.

5

Properties of BFS

Lemma: All vertices at level 𝑖 of BFS(s) have shortest path
distance 𝑖 to s.

Claim: If 𝐿 𝑣 = 𝑖 then shortest path ≤ 𝑖
Pf: Because there is a path of length 𝑖 from 𝑠 to 𝑣 in the BFS tree

Claim: If shortest path = 𝑖 then 𝐿 𝑣 ≤ 𝑖
Pf: If shortest path = 𝑖, then say 𝑠 = 𝑣0, 𝑣1, … , 𝑣𝑖 = 𝑣 is the
shortest path to v.

By previous claim,
𝐿 𝑣1 ≤ 𝐿 𝑣0 + 1
𝐿 𝑣2 ≤ 𝐿 𝑣1 + 1

…
𝐿 𝑣𝑖 ≤ 𝐿 𝑣𝑖−1 + 1

So, 𝐿 𝑣𝑖 ≤ 𝑖.

This proves the lemma.
6

Why Trees?

Trees are simpler than graphs

Many statements can be proved on trees by induction

So, computational problems on trees are simpler than
general graphs

This is often a good way to approach a graph problem:

• Find a "nice" tree in the graph, i.e., one such that non-
tree edges have some simplifying structure

• Solve the problem on the tree

• Use the solution on the tree to find a “good” solution on
the graph

7

Graph Search App: Connected Comp

We want to answer the following type questions (fast):

Given vertices u,v is there a path from u to v in G?

Idea: Create an array A such that

For all u, A[u] is the smallest index vertex that is connected
to u (i.e., in the same connected component)

Therefore, question reduces to

If A[u] = A[v]?

8

Connected Components Implemention

Initial State: All vertices undiscovered

for v = 1 to n do
If state(v) != fully-explored then

BFS(v): setting A[u] v for each u found
(and marking u discovered/fully-explored)

Note: We no longer initialize to undiscovered in the BFS
subroutine

Total Cost: O(m+n)

In every connected component with 𝑛𝑖 vertices and 𝑚𝑖
edges BFS takes time 𝑂 𝑚𝑖 + 𝑛𝑖 .

9

Connected Components

Lesson: We can execute any algorithm on disconnected
graphs by running it on each connected component.

We can use the previous algorithm to detect connected
components.

There is no overhead, because the algorithm runs in time
O(m+n).

So, from now on, we can (almost) always assume the input
graph is connected.

10

Cycles in Graphs

Claim: If G has n vertices and at least n edges, then it has
a cycle

Pf: If G is connected, then it cannot be a tree. Because
every tree has n-1 edges. So, it has a cycle.

Suppose G is disconnected. Say connected components of
G have 𝑛1, … , 𝑛𝑘vertices where 𝑛1 +⋯+ 𝑛𝑘 = 𝑛

Since G has ≥ 𝑛 edges, there must be some 𝑖 such that a
component has 𝑛𝑖 vertices with at least 𝑛𝑖 edges.

Therefore, in that component we do not have a tree, so
there is a cycle.

11

Bipartite Graphs

Definition: An undirected graph G=(V,E) is bipartite

if you can partition the node set into 2 parts (say, blue/red
or left/right) so that

all edges join nodes in different parts

i.e., no edge has both ends in the same part.

Application:

• Scheduling: machine=red, jobs=blue

• Stable Matching: men=blue, wom=red

12

a bipartite graph

Testing Bipartiteness

Problem: Given a graph G, is it bipartite?

Many graph problems become:

• Easier if the underlying graph is bipartite (matching)

• Tractable if the underlying graph is bipartite (independent set)

Before attempting to design an algorithm, we need to

understand structure of bipartite graphs.

13

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G

An Obstruction to Bipartiteness

Lemma: If G is bipartite, then it does not contain an odd

length cycle.

Pf: We cannot 2-color an odd cycle, let alone G.

14

bipartite

(2-colorable)

not bipartite

(not 2-colorable)

?

A Characterization of Bipartite Graphs

Lemma: Let G be a connected graph, and let 𝐿0, … , 𝐿𝑘 be the

layers produced by BFS(s). Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is

bipartite.

(ii) An edge of G joins two nodes of the same layer, and G

contains an odd-length cycle (and hence is not bipartite).

15
Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3

A Characterization of Bipartite Graphs

Lemma: Let G be a connected graph, and let 𝐿0, … , 𝐿𝑘 be the

layers produced by BFS(s). Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is

bipartite.

(ii) An edge of G joins two nodes of the same layer, and G

contains an odd-length cycle (and hence is not bipartite).

Pf. (i)

Suppose no edge joins two nodes in the same layer.

By previous lemma, all edges join nodes on adjacent levels.

16
Case (i)

L1 L2 L3

Bipartition:

blue = nodes on odd levels,

red = nodes on even levels.

A Characterization of Bipartite Graphs

Lemma: Let G be a connected graph, and let 𝐿0, … , 𝐿𝑘 be the

layers produced by BFS(s). Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is

bipartite.

(ii) An edge of G joins two nodes of the same layer, and G

contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)

Suppose (x, y) is an edge & x, y in same level 𝐿𝑗.

Let z = their lowest common ancestor in BFS tree.

Let 𝐿𝑖 be level containing z.

Consider cycle that takes edge from x to y,

then tree from y to z, then tree from z to x.

Its length is 1 + (j-i) + (j-i), which is odd.

17

z = lca(x, y)

Obstruction to Bipartiteness

Cor: A graph G is bipartite iff it contains no odd length

cycles.

18

bipartite

(2-colorable)

not bipartite

(not 2-colorable)

