Lemma: \(L(v) = i \) if and only if shortest path to \(s \) is \(i \).

Proof:

1. \(L(v) = i \) \(\Rightarrow \) shortest path \(\leq i \).

2. Shortest path \(= i \) \(\Rightarrow \) \(L(v) \leq i \).

\(S = v_0, v_1, \ldots, v_i = v \)

\(L(v_0) = 0 \)

\(\forall j \), \(L(v_j) - L(v_{j-1}) \leq 1 \)

\(\frac{1}{i} \left(\sum_{j=1}^{i} L(v_j) - L(v_0) \right) \leq 1 \)

\(L(v_i) - L(v_{i-1}) \leq 1 \)

\(L(v_i) - L(v_0) \leq i \)
Claim: If G has at least n edges then it has a cycle.

Proof: If G is connected and it has no cycle, it is a tree. But a tree has $n-1$ edges, contradiction.

If not, I can map so that $\# \text{edges} \geq \# \text{vertices}$ (because $\# \text{edges} \geq \# \text{verts}$ in G). So by above, it has a cycle.

Claim: If $L(v) = L(u) = i$ and $\{u,v\}$ an edge then there is an odd cycle.

\[j - i + j - i + 1 = 2(j - i) + 1 \]