CSE 421: Introduction to Algorithms

Trees/Graph Traversal

Shayan Oveis Gharan
Storing Graphs (Internally in ALG)

Adjacency List:
$O(n+m)$ words

Advantage
• Compact for sparse
• Easily see all edges

Disadvantage
• No $O(1)$ edge test
• More complex data structure
Storing Graphs (Internally in ALG)

Adjacency List: O(n+m) words

Advantage
• Compact for sparse
• Easily see all edges

Disadvantage
• No O(1) edge test
• More complex data structure
Claim: If G has no cycle, then it has a vertex of degree \(\leq 1 \) (So, every tree has a leaf)

Pf: (By contradiction)
Suppose every vertex has degree \(\geq 2 \).
Start from a vertex \(v_1 \) and follow a path, \(v_1, ..., v_i \) when we are at \(v_i \) we choose the next vertex to be different from \(v_{i-1} \). We can do so because \(\deg(v_i) \geq 2 \).
The first time that we see a repeated vertex (\(v_j = v_i \)) we get a cycle.
We always get a repeated vertex because \(G \) has finitely many vertices
Claim: Show that every tree with n vertices has $n-1$ edges.

Pf: By induction.

Base Case: $n=1$, the tree has no edge

IH: Suppose every tree with $n-1$ vertices has $n-2$ edges

IS: Let T be a tree with n vertices.
So, T has a vertex v of degree 1.
Remove v and the neighboring edge, and let T' be the new graph.
We claim T' is a tree: It has no cycle, and it must be connected.
So, T' has $n-2$ edges and T has $n-1$ edges.
Graph Traversal

Walk (via edges) from a fixed starting vertex s to all vertices reachable from s.

- Breadth First Search (BFS): Order nodes in successive layers based on distance from s
- Depth First Search (DFS): More natural approach for exploring a maze; many efficient algs build on it.

Applications:
- Finding Connected components of a graph
- Testing Bipartiteness
- Finding Aritculation points
Breadth First Search (BFS)

Completely explore the vertices in order of their distance from \(s \).

Three states of vertices:
- Undiscovered
- Discovered
- Fully-explored

Naturally implemented using a queue
The queue will always have the list of Discovered vertices
BFS implementation

Global initialization: mark all vertices "undiscovered"

BFS(s)
 mark s "discovered"
queue = { s }
while queue not empty
 u = remove_first(queue)
 for each edge {u,x}
 if (x is undiscovered)
 mark x discovered
 append x on queue
 mark u fully-explored
BFS(1)

Queue:
1
BFS(1)

Queue: 3 4
BFS(1)

Queue: 4 5 6 7
BFS(1)

Queue: 5 6 7 8 9
BFS(1)

Queue: 7 8 9 10
BFS(1)

Queue: 9 10 11 12 13
BFS(1)

Queue:
BFS Analysis

Global initialization: mark all vertices "undiscovered"

BFS(s)
mark s discovered
queue = { s }

while queue not empty
 u = remove_first(queue)
 for each edge \{u, x\}
 if (x is undiscovered)
 mark x discovered
 append x on queue
 mark u fully-explored

If we use adjacency list: $O(n) + O(\sum_v \text{deg}(v)) = O(m + n)$
Properties of BFS

- **BFS(s)** visits a vertex v if and only if there is a path from s to v

- Edges into then- undiscovered vertices define a tree – the “Breadth First spanning tree” of G

- Level i in the tree are exactly all vertices v s.t., the shortest path (in G) from the root s to v is of length i

- All nontree edges join vertices on the same or adjacent levels of the tree
BFS Application: Shortest Paths

BFS Tree gives shortest paths from 1 to all vertices

All edges connect same or adjacent levels
BFS Application: Shortest Paths

BFS Tree gives shortest paths from 1 to all vertices

All edges connect same or adjacent levels
Properties of BFS

Claim: All nontree edges join vertices on the same or adjacent levels of the tree

Pf: Consider an edge \{x,y\}
Say x is first discovered and it is added to level i. We show y will be at level i or $i + 1$

This is because when vertices incident to x are considered in the loop, if y is still undiscovered, it will be discovered and added to level $i + 1$.