CSE 421: Introduction to Algorithms

Induction - Graphs

Shayan Oveis Gharan
Problem: Given a sequence x_1, \ldots, x_n of integers (not necessarily positive),

Goal: Find a subsequence of consecutive elements s.t., the sum of its numbers is maximum.
Second Attempt (Strengthening Ind Hyp)

Stronger Ind Hypothesis: Given x_1, \ldots, x_{n-1} we can compute the maximum-sum subsequence, and the maximum-sum suffix subsequence.

-3, $\boxed{7, -2, 1,}$ -8, $\boxed{6, -2}$

Say x_i, \ldots, x_j is the maximum-sum and x_k, \ldots, x_{n-1} is the maximum-sum suffix subsequences.

- If $x_k + \cdots + x_{n-1} + x_n > x_i + \cdots + x_j$ then x_k, \ldots, x_n will be the new maximum-sum subsequence
Updating Max Suffix Subsequence

\[-3, 7, -2, 1, -8, 6, -2, 4\]

Say x_k, \ldots, x_{n-1} is the maximum-sum suffix subsequences of x_1, \ldots, x_{n-1}.

- If $x_k + \cdots + x_n \geq 0$ then,
 \[x_k, \ldots, x_n\] is the new maximum-sum suffix subsequence

- Otherwise,
 The new maximum-sum suffix is the empty string.
Initialize $S=0$ (Sum of numbers in Maximum Subseq)

Initialize $U=0$ (Sum of numbers in Maximum Suffix)

for $(i=1$ to $n)$ {
 if $(x[i] + U > S)$
 $S = x[i] + U$

 if $(x[i] + U > 0)$
 $U = x[i] + U$
 else
 $U = 0$

}

Output S.
Pf of Correct: Maximum Sum Subseq

Ind Hypo: Suppose
- \(x_i, ... , x_j \) is the max-sum-subseq of \(x_1, ... , x_{n-1} \)
- \(x_k, ... , x_{n-1} \) is the max-suffix-sum-sub of \(x_1, ... , x_{n-1} \)

Ind Step: Suppose \(x_a, ... , x_b \) is the max-sum-subseq of \(x_1, ... , x_n \)

Case 1 (\(b < n \)): \(x_a, ... , x_b \) is also the max-sum-subseq of \(x_1, ... , x_{n-1} \)
So, \(a = i, b = j \) and the algorithm correctly outputs OPT

Case 2 (\(b = n \)): We must have \(x_a, ... , x_{b-1} \) is the max-suff-sum of \(x_1, ... , x_{n-1} \).
If not, then
\[
x_k + \cdots + x_{n-1} > x_a + \cdots + x_{n-1}
\]
So, \(x_k + \cdots + x_n > x_a + \cdots + x_b \) which is a contradiction.
Therefore, \(a = k \) and the algorithm correctly outputs OPT

Special Cases (You don’t need to mention if follows from above):
- The max-suffix-sum is empty string
- There are multiple maximum sum subsequences.
Pf of Correct: Max-Sum Suff Subseq

Ind Hypo: Suppose

- x_k, \ldots, x_{n-1} is the max-suffix-sum-sub of x_1, \ldots, x_{n-1}

Ind Step: Suppose x_a, \ldots, x_n is the max-sum-subseq of x_1, \ldots, x_n

Note that we may also have an empty sequence

Case 1 (OPT is empty): Then, we must have $x_k + \cdots + x_n < 0$. So the algorithm correctly finds max-suffix-sum subsequence.

Case 2 (x_a, \ldots, x_n is nonempty): We must have $x_a + \cdots + x_n \geq 0$. Also, x_a, \ldots, x_{n-1} must be the max-suffix-sum of x_1, \ldots, x_{n-1}. If not, $x_a + \cdots + x_{n-1} < x_k + \cdots + x_{n-1}$ which implies $x_a + \cdots + x_n < x_k + \cdots + x_n$ which is a contradiction.

Therefore, $a = k$. So, the algorithm correctly finds max-suffix-sum subsequence.
Summary

• Try to reduce an instance of size n to smaller instances
 • Never solve a problem twice

• Before designing an algorithm study properties of optimum solution

• If ordinary induction fails, you may need to strengthen the induction hypothesis
Graphs
Undirected Graphs $G=(V,E)$
Graphs don’t Live in Flat Land

Geometrical drawing is mentally convenient, but mathematically irrelevant:

4 drawings of a single graph:
Directed Graphs

- Multi edge
- Self loop
Terminology

- **Degree of a vertex**: # edges that touch that vertex

 \[\text{deg}(6) = 3 \]

- **Connected**: Graph is connected if there is a path between every two vertices

- **Connected component**: Maximal set of connected vertices
Terminology (cont’d)

- **Path**: A sequence of distinct vertices s.t. each vertex is connected to the next vertex with an edge.

- **Cycle**: Path of length > 2 that has the same start and end.

- **Tree**: A connected graph with no cycles.
Degree Sum

Claim: In any undirected graph, the number of edges is equal to \((1/2) \sum_{\text{vertex } v} \deg(v)\)

Pf: \(\sum_{\text{vertex } v} \deg(v)\) counts every edge of the graph exactly twice; once from each end of the edge.

\[
|E| = 8
\]

\[
\sum_{\text{vertex } v} \deg(v) = 2 + 2 + 1 + 1 + 3 + 2 + 3 + 2 = 16
\]
Odd Degree Vertices

Claim: In any undirected graph, the number of odd degree vertices is even.

Pf: In previous claim we showed sum of all vertex degrees is even. So there must be even number of odd degree vertices, because sum of odd number of odd numbers is odd.

4 odd degree vertices
3, 4, 5, 6
Let $G = (V, E)$ be a graph with $n = |V|$ vertices and $m = |E|$ edges.

Claim: $0 \leq m \leq \binom{n}{2} = \frac{n(n-1)}{2} = O(n^2)$

Pf: Since every edge connects two distinct vertices (i.e., G has no loops) and no two edges connect the same pair of vertices (i.e., G has no multi-edges) it has at most $\binom{n}{2}$ edges.
Sparse Graphs

A graph is called **sparse** if $m \ll n^2$ and it is called **dense** otherwise.

Sparse graphs are very common in practice
- Friendships in social network
- Planar graphs
- Web graph

Q: Which is a better running time $O(n + m)$ vs $O(n^2)$?

A: $O(n + m) = O(n^2)$, but $O(n + m)$ is usually much better.
Storing Graphs (Internally in ALG)

Vertex set $V = \{v_1, ..., v_n\}$.

Adjacency Matrix: A

- For all, $i, j, A[i, j] = 1$ iff $(v_i, v_j) \in E$
- Storage: n^2 bits

Advantage:
- $O(1)$ test for presence or absence of edges

Disadvantage:
- Inefficient for sparse graphs both in storage and edge-access
Storing Graphs (Internally in ALG)

Adjacency List:
$O(n+m)$ words

Advantage
- Compact for sparse
- Easily see all edges

Disadvantage
- No $O(1)$ edge test
- More complex data structure