CSE 421

Course Overview / Complexity
Five Representative Problems

1. Interval Scheduling
2. Weighted Interval Scheduling
3. Bipartite Matching
4. Independent Set Problem
5. Competitive Facility Location
Interval Scheduling

**Input:** Given a set of jobs with start/finish times

**Goal:** Find the maximum cardinality subset of jobs that can be run on a single machine.
Interval Scheduling

**Input**: Given a set of jobs with start/finish times

**Goal**: Find the maximum weight subset of jobs that can be run on a single machine.
Bipartite Matching

Input: Given a bipartite graph

Goal: Find the maximum cardinality matching
Independent Set

**Input**: A graph

**Goal**: Find the **maximum independent set**

Subset of nodes that no two joined by an edge

![Graph illustration](image-url)
Competitive Facility Location

**Input**: Graph with weight on each node

**Game**: Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors have been selected.

**Goal**: Does player 2 have a strategy which guarantees a total value of $V$ no matter what player 1 does?

Second player can guarantee 20, but not 25.
Five Representative Problems

Variation of a theme: Independent set Problem

1. Interval Scheduling
   \( n \log n \) greedy algorithm

2. Weighted Interval Scheduling
   \( n \log n \) dynamic programming algorithm

3. Bipartite Matching
   \( n^k \) maximum flow based algorithm

4. Independent Set Problem: NP-complete

5. Competitive Facility Location: PSPACE-complete
Defining Efficient Algorithms
Defining Efficiency

“Runs fast on typical real problem instances”

Pros:
• Sensible,
• Bottom-line oriented

Cons:
• Moving target (diff computers, programming languages)
• Highly subjective (how fast is “fast”? What is “typical”?)
Measuring Efficiency

Time \approx \# \text{ of instructions executed in a simple programming language}

- only simple operations (+, *, -, =, if, call, ...)
- each operation takes one time step
- each memory access takes one time step

no fancy stuff (add these two matrices, copy this long string, ...) built in; write it/charge for it as above
Time Complexity

Problem: An algorithm can have different running time on different inputs

Solution: The complexity of an algorithm associates a number $T(N)$, the “time” the algorithm takes on problem size $N$.

On which inputs of size $N$?

Mathematically,

$T$ is a function that maps positive integers giving problem size to positive integers giving number of steps
Time Complexity (N)

Worst Case Complexity: \textbf{max} \ # steps algorithm takes on any input of size $N$

Average Case Complexity: \textbf{avg} \ # steps algorithm takes on inputs of size $N$

Best Case Complexity: \textbf{min} \ # steps algorithm takes on any input of size $N$
Why Worst-case Inputs?

• Analysis is typically easier

• Useful in real-time applications
  e.g., space shuttle, nuclear reactors)

• Worst-case instances kick in when an algorithm is run as a module many times
  e.g., geometry or linear algebra library

• Useful when running competitions
  e.g., airline prices

• Unlike average-case no debate about the right definition
Time Complexity on Worst Case Inputs

The graph shows the relationship between Time and Problem size $N$. The time complexity $T(N)$ is given by the equation $2N \log_2 N$. The graph also includes lines for $N \log_2 N$ and $T(N)$ as reference.
O-Notation

Given two positive functions $f$ and $g$

- $f(N)$ is $O(g(N))$ iff there is a constant $c > 0$ s.t., $f(N)$ is eventually always $\leq c \cdot g(N)$

- $f(N)$ is $\Omega(g(N))$ iff there is a constant $\varepsilon > 0$ s.t., $f(N)$ is $\geq \varepsilon \cdot g(N)$ for infinitely

- $f(N)$ is $\Theta(g(N))$ iff there are constants $c_1, c_2 > 0$ so that eventually always $c_1 g(N) \leq f(N) \leq c_2 g(N)$
Asymptotic Bounds for common fns

- **Polynomials:**
  \[ a_0 + a_1 n + \cdots + a_d n^d \]  
  is \( O(n^d) \)

- **Logarithms:**
  \[ \log_a n = O(\log_b n) \]  
  for all constants \( a, b > 0 \)

- **Logarithms:** log grows slower than every polynomial
  For all \( x > 0 \), \( \log n = O(n^k) \)

- \( n \log n = O(n^{1.01}) \)
Efficient = Polynomial Time

An algorithm runs in polynomial time if $T(n) = O(n^d)$ for some constant $d$ independent of the input size $n$.

Why Polynomial time?

If problem size grows by at most a constant factor then so does the running time

- E.g. $T(2N) \leq c(2N)^k \leq 2^k(cN^k)$
- Polynomial-time is exactly the set of running times that have this property

Typical running times are small degree polynomials, mostly less than $N^3$, at worst $N^6$, not $N^{100}$
Why it matters?

- #atoms in universe < $2^{240}$
- Life of the universe < $2^{54}$ seconds
- A CPU does < $2^{30}$ operations a second

If every atom is a CPU, a $2^n$ time ALG cannot solve $n=350$ if we start at Big-Bang.

<table>
<thead>
<tr>
<th>$n$</th>
<th>$n \log_2 n$</th>
<th>$n^2$</th>
<th>$n^3$</th>
<th>$1.5^n$</th>
<th>$2^n$</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 10$</td>
<td>&lt; 1 sec</td>
<td>4 sec</td>
</tr>
<tr>
<td>$n = 30$</td>
<td>&lt; 1 sec</td>
<td>18 min</td>
</tr>
<tr>
<td>$n = 50$</td>
<td>&lt; 1 sec</td>
<td>&lt; 1 sec</td>
<td>&lt; 1 sec</td>
<td>&lt; 1 sec</td>
<td>11 min</td>
<td>36 years</td>
</tr>
<tr>
<td>$n = 100$</td>
<td>&lt; 1 sec</td>
<td>&lt; 1 sec</td>
<td>&lt; 1 sec</td>
<td>1 sec</td>
<td>12,892 years</td>
<td>$10^{17}$ years</td>
</tr>
<tr>
<td>$n = 1,000$</td>
<td>&lt; 1 sec</td>
<td>&lt; 1 sec</td>
<td>1 sec</td>
<td>18 min</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 10,000$</td>
<td>&lt; 1 sec</td>
<td>&lt; 1 sec</td>
<td>2 min</td>
<td>12 days</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 100,000$</td>
<td>&lt; 1 sec</td>
<td>2 sec</td>
<td>3 hours</td>
<td>32 years</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>$n = 1,000,000$</td>
<td>1 sec</td>
<td>20 sec</td>
<td>12 days</td>
<td>31,710 years</td>
<td>very long</td>
<td>very long</td>
</tr>
</tbody>
</table>

not only get very big, but do so *abruptly*, which likely yields erratic performance on small instances
Why “Polynomial”? 

Point is not that $n^{2000}$ is a practical bound, or that the differences among $n$ and $2n$ and $n^2$ are negligible. Rather, simple theoretical tools may not easily capture such differences, whereas exponentials are qualitatively different from polynomials, so more amenable to theoretical analysis.

• “My problem is in P” is a starting point for a more detailed analysis

• “My problem is not in P” may suggest that you need to shift to a more tractable variant