1 Asymptotics

Some properties of asymptotics:

- If \(f \leq O(g) \) and \(g \leq O(h) \) then \(f \leq O(h) \).
- If \(f \geq \Omega(g) \) and \(g \geq \Omega(h) \) then \(f \geq \Omega(h) \).
- If \(f = \Theta(g) \) and \(g = \Theta(h) \) then \(f = \Theta(h) \).
- If \(f = O(h) \), \(g = O(h) \) then \(f + g = O(h) \).

Some common running times:

- Polynomial: \(O(n^d) \). Exponential \(2^{O(n)} \), Logarithmic \(O(\log n) \).
- For every positive \(\epsilon \) (no matter how small), \(\log n \leq O(n^\epsilon) \). For every positive \(d \) (no matter how large), \(n^d \leq O(2^n) \).

2 In class exercise

Arrange in increasing order of asymptotic growth:

1. \(f_3(n) = n^{5/3} \)
2. \(f_2(n) = n^{\log^2 n} \cdot 2^n \)
3. \(f_4(n) = n^{\log^3 n} \)
4. \(f_5(n) = n^{\log n} \)
5. \(f_6(n) = 2^{n\log n} \).

Hint:

- Always keep in mind \(n = 2^{\log_2 n} \). For example, \(n^{1.5} = 2^{1.5\log_2 n} \).
- Also recall \(2^a \cdot 2^b = 2^{a+b} \).