
CSE 421

Polynomial Time Reductions,

NP, NP-Completeness

Shayan Oveis Gharan

1

P vs NP

2

If 𝑃 = 𝑁𝑃

NP-hard

EXP

P = NP

If 𝑃 ≠ 𝑁𝑃

NP-hard

NP

PNP-hard
NP

complete

Cook-Levin Theorem

Theorem (Cook 71, Levin 73): 3-SAT is NP-complete, i.e., for all
problems 𝐴 ∈ 𝑁𝑃, 𝐴 ≤𝑝 3-SAT.

• So, 3-SAT is the hardest problem in NP.

What does this say about other problems of interest? Like
Independent set, Vertex Cover, …

Fact: If 𝐴 ≤𝑝 𝐵 and 𝐵 ≤𝑝 𝐶 then, 𝐴 ≤𝑝 𝐶
Pf idea: Just compose the reductions from A to B and B to C

So, if we prove 3-SAT ≤𝑝 Independent set, then Independent
Set, Clique, Vertex cover, Set cover are all NP-complete

3-SAT ≤𝑝 Independent Set ≤𝑝 Vertex Cover ≤𝑝 Set Cover

3

3-SAT ≤𝑝 Independent Set

Map a 3-CNF to (G,k). Say m is number of clauses

• Create a vertex for each literal

• Joint two literals if

• They belong to the same clause (blue edges)

• The literals are negations, e.g., 𝑥𝑖 , ഥ𝑥𝑖 (red edges)

• Set k=m

𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3

4

𝑥1

𝑥3

𝑥4

𝑥2

𝑥3

𝑥4

𝑥2

𝑥1

𝑥3

Polynomial-Time Reduction

Correctness of 3-SAT ≤𝑝 Indep Set

F satisfiable => An independent of size m

Given a satisfying assignment, Choose one node from each clause
where the literal is satisfied

𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3

Satisfying assignment: 𝑥1 = 𝑇, 𝑥2 = 𝐹, 𝑥3 = 𝑇, 𝑥4 = 𝐹

• S has exactly one node per clause => No blue edges between S

• S follows a truth-assignment => No red edges between S

• S has one node per clause => |S|=m 5

𝑥1

𝑥3

𝑥4

𝑥2

𝑥3

𝑥4

𝑥2

𝑥1

𝑥3

Correctness of 3-SAT ≤𝑝 Indep Set

An independent set of size m => A satisfying assignment

Given an independent set S of size m.

S has exactly one vertex per clause (because of blue edges)

S does not have 𝑥𝑖 , ഥ𝑥𝑖 (because of red edges)

So, S gives a satisfying assignment

Satisfying assignment: 𝑥1 = 𝐹, 𝑥2 =? , 𝑥3 = 𝑇, 𝑥4 = 𝑇
𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3

6

𝑥1

𝑥3

𝑥4

𝑥2

𝑥3

𝑥4

𝑥2

𝑥1

𝑥3

Summary

• If a problem is NP-hard it does not mean that all instances are
hared, e.g., Vertex-cover has a polynomial-time algorithm in
trees

• We learned the crucial idea of polynomial-time reduction. This
can be even used in algorithm design, e.g., we know how to
solve max-flow so we reduce image segmentation to max-flow

• NP-Complete problems are the hardest problem in NP

• NP-hard problems may not necessarily belong to NP.

• Polynomial-time reductions are transitive relations

7

Linear Programming

Linear System of Equations

In high school we learn Gaussian elimination algorithm to solve a
system of linear equations

𝑥1 + 𝑥3 = 7
2𝑥2 + 𝑥1 = 5

3𝑥1 + 7𝑥2 − 𝑥3 = 1

We set 𝑥3 = 7 − 𝑥1 and we substitute in the following
equations.

Then we substitute 𝑥2 =
5−𝑥1

2
in to the third equations.

The third equational uniquely defines 𝑥1

9

Linear Programming

Optimize a linear function subject to linear inequalities

max 3𝑥1 + 4𝑥3
𝑠. 𝑡. , 𝑥1+𝑥2 ≤ 5

𝑥3−𝑥1 = 4
𝑥3 − 𝑥2 ≥ −5
𝑥1, 𝑥2, 𝑥3 ≥ 0

• We can have inequalities,

• We can have a linear objective funtions

10

Applications of Linear Programming

Generalizes: Ax=b, 2-person zero-sum games, shortest path,
max-flow, matching, multicommodity flow, MST, min weighted
arborescence, …

Why significant?

• We can solve linear programming in polynomial time.

• Useful for approximation algorithms

• We can model many practical problems with a linear model
and solve it with linear programming

Linear Programming in Practice:

• There are very fast implementations: IBM CPLEX, Gorubi in
Python, CVX in Matlab, ….

• CPLEX can solve LPs with millions of variables/constraints in
minutes

11

Example 1: Diet Problem

Suppose you want to schedule a diet for yourself. There are four

category of food: veggies, meat, fruits, and dairy. Each category has its

own (p)rice, (c)alory and (h)appiness per pound:

Suppose we model this as a linear model, i.e., if we eat 0.5lb of meat

an 0.2lb of fruits we will be 0.5 ℎ𝑚 + 0.2 ℎ𝑓 happy

• You should eat 1500 calaroies to be healthy

• You can spend 20 dollars a day on food.

Goal: Maximize happiness?

12

veggies meat fruits dairy

price 𝑝𝑣 𝑝𝑚 𝑝𝑓 𝑝𝑑

calorie 𝑐𝑣 𝑐𝑚 𝑐𝑓 𝑐𝑑

happiness ℎ𝑣 ℎ𝑚 ℎ𝑓 ℎ𝑑

Diet Problem by LP

• You should eat 1500 calaroies to be healthy

• You can spend 20 dollars a day on food.

Goal: Maximize happiness?

13

veggies meat fruits dairy

price 𝑝𝑣 𝑝𝑚 𝑝𝑓 𝑝𝑑

calorie 𝑐𝑣 𝑐𝑚 𝑐𝑓 𝑐𝑑

happiness ℎ𝑣 ℎ𝑚 ℎ𝑓 ℎ𝑑

max 𝑥𝑣ℎ𝑣 + 𝑥𝑚ℎ𝑚 + 𝑥𝑓ℎ𝑓 + 𝑥𝑑ℎ𝑑
𝑠. 𝑡. 𝑥𝑣𝑝𝑣 + 𝑥𝑚𝑝𝑚 + 𝑥𝑓𝑝𝑓 + 𝑥𝑑𝑝𝑑 ≤ 20

𝑥𝑣𝑐𝑣 + 𝑥𝑚𝑐𝑚 + 𝑥𝑓𝑐𝑓 + 𝑥𝑑𝑐𝑑 ≤ 1500

𝑥𝑣 , 𝑥𝑚, 𝑥𝑓 , 𝑥𝑑 ≥ 0

#pounds of veggies, meat, fruits, dairy to eat per day

How to Design an LP?

• Define the set of variables

• Put constraints on your variables,

• should they be nonnegative?

• Write down the constraints

• If a constraint is not linear try to approximate it with a linear

constraint

• Write down the objective function

• If it is not linear approximation with a linear function

• Decide if it is a minimize/maximization problem

14

Example 2: Max Flow

Define the set of variables

• For every edge 𝑒 let 𝑥𝑒 be the flow on the edge 𝑒

Put constraints on your variables

• 𝑥𝑒 ≥ 0 for all edge e (The flow is nonnegative)

Write down the constraints

• 𝑥𝑒 ≤ 𝑐(𝑒) for every edge e, (Capacity constraints)

• σ𝑒 out of 𝑣 𝑥𝑒 = σ𝑒 in to 𝑣 𝑥𝑒 ∀𝑣 ≠ 𝑠, 𝑡 (Conservation constraints)

Write down the objective function

• σ𝑒 out of 𝑠 𝑥𝑒

Decide if it is a minimize/maximization problem

• max

15

Example 2: Max Flow

Q:Do we get exactly the same properties as Ford Fulkerson?

A: Not necessarily, the max-flow may not be integral

16

max ෍
𝑒 out of 𝑠

𝑥𝑒

𝑠. 𝑡. ෍
𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑣

𝑥𝑒 =෍
𝑒 𝑖𝑛 𝑡𝑜 𝑣

𝑥𝑒 ∀𝑣 ≠ 𝑠, 𝑡

𝑥𝑒 ≤ 𝑐 𝑒 ∀𝑒
𝑥𝑒 ≥ 0 ∀𝑒

Example 3: Min Cost Max Flow

Suppose we can route 100 gallons of water from 𝑠 to 𝑡.
But for every pipe edge 𝑒 we have to pay 𝑝 𝑒
for each gallon of water that we send through 𝑒.

Goal: Send 100 gallons of water from 𝑠 to 𝑡 with minimum
possible cost

17

min ෍
𝑒∈E

𝑝 𝑒 ⋅ 𝑥𝑒

𝑠. 𝑡. ෍
𝑒 out of 𝑣

𝑥𝑒 =෍
𝑒 𝑖𝑛 𝑡𝑜 𝑣

𝑥𝑒 ∀𝑣 ≠ 𝑠, 𝑡

෍
𝑒 out of 𝑠

𝑥𝑒 = 100

𝑥𝑒 ≤ 𝑐 𝑒 ∀𝑒
𝑥𝑒 ≥ 0 ∀𝑒

Summary (Linear Programming)

• Linear programming is one of the biggest advances in 20th

century

• It is being used in many areas of science: Mechanics,
Physics, Operations Research, and in CS: AI, Machine
Learning, Theory, …

• Almost all problems that we talked can be solved with LPs,
Why not use LPs?
• Combinatorial algorithms are typically faster

• They exhibit a better understanding of worst case instances of a
problem

• They give certain structural properties, e.g., Integrality of Max-flow when
capacities are integral

• There is rich theory of LP-duality which generalizes max-flow
min-cut theorem

18

What is next?

• CSE 431 (Complexity Course)

• Learn about how to prove lower bounds on algorithms

• CSE 521 (Graduate Algorithms Course)

• How to design streaming algorithms?

• How to design algorithms for high dimensional data?

• How to use matrices/eigenvalues/eigenvectors to design algorithms

• How to use LPs to design algorithms?

• CSE 525 (Graduate Randomized Algorithms Course)

• How to use randomization to design algorithms?

• How to use Markov Chains to design algorithms?

19

