
CSE 421

Polynomial Time Reductions,

NP, NP-Completeness

Shayan Oveis Gharan

1

≤𝑝
1 Reductions

Here, We will always use a restricted form of polynomial-

time reduction often called Karp or many-to-one reduction

𝐴 ≤𝑝
1 𝐵: if and only if there is an algorithm for A given a

black box solving B that on input x

• Runs for polynomial time computing an input f(x) of B

• Makes one call to the black box for B for input f(x)

• Returns the answer that the black box gave

We say that the function f(.) is the reduction

2

Indep Set: Given G=(V,E) and an integer k, is there 𝑆 ⊆ 𝑉 s.t.
𝑆 ≥ 𝑘 an no two vertices in S are joined by an edge?

Clique: Given a graph G=(V,E) and an integer k, is there 𝑆 ⊆ 𝑉,
|U|  k s.t., every pair of vertices in S is joined by an edge?

Claim: Indep Set ≤𝑝 Clique

Pf: Given 𝐺 = (𝑉, 𝐸) and instance of indep Set. Construct a new
graph 𝐺′ = (𝑉, 𝐸′) where 𝑢, 𝑣 ∈ 𝐸′ if and only if 𝑢, 𝑣 ∉ 𝐸.

Example 1: Indep Set ≤𝑝 Clique

3

S is an independ

set in G

S is an Clique

in G’

1

2

3 4

5

1

2

3 4

5

Example 2: Vertex Cover ≤𝑝 Indep Set

Vertex Cover: Given a graph G=(V,E) and an integer k, is there a
vertex cover of size at most k?

Claim: For any graph 𝐺 = 𝑉, 𝐸 , S is an independent set iff
𝑉 − 𝑆 is a vertex cover

Pf:

=> Let S be a independent set of G

Then, 𝑆 has at most one endpoint of every edge of G

So, 𝑉 − 𝑆 has at least one endpoint of every edge of G

So, 𝑉 − 𝑆 is a vertex cover.

<= Suppose 𝑉 − 𝑆 is a vertex cover

Then, there is no edge between vertices of S (otherwise, 𝑉 − 𝑆 is
not a vertex cover)

So, 𝑆 is an independent set.

4

Example 3: Vertex Cover ≤𝑝 Set Cover

Set Cover: Given a set U, collection of subsets 𝑆1, … , 𝑆𝑚 of U and
an integer k, is there a collection of k sets that contain all
elements of U?

Claim: Vertex Cover ≤𝑝 Set Cover

Pf:

Given (𝐺 = 𝑉, 𝐸 , 𝑘) of vertex cover we construct a set cover
input 𝑓(𝐺, 𝑘)
• 𝑈 = 𝐸
• For each 𝑣 ∈ 𝑉 we create a set 𝑆𝑣 of all edges connected to 𝑣

This clearly is a polynomial-time reduction

So, we need to prove it gives the right answer

5

Example 3: Vertex Cover ≤𝑝 Set Cover

Claim: Vertex Cover ≤𝑝 Set Cover

Pf: Given (𝐺 = 𝑉, 𝐸 , 𝑘) of vertex cover we construct a set cover
input 𝑓(𝐺, 𝑘)
• 𝑈 = 𝐸
• For each 𝑣 ∈ 𝑉 we create a set 𝑆𝑣 of all edges connected to 𝑣

Vertex-Cover (G,k) is yes => Set-Cover f(G,k) is yes

If a set 𝑊 ⊆ 𝑉 covers all edges,, just choose 𝑆𝑣 for all 𝑣 ∈ 𝑊, it
covers all 𝑈.

Set-Cover f(G,k) is yes => Vertex-Cover (G,k) is yes

If (𝑆𝑣1 , … , 𝑆𝑣𝑘) covers all 𝑈, the set {𝑣1, … , 𝑣𝑘} covers all edges
of G.

6

Decision Problems

A decision problem is a computational problem where the
answer is just yes/no

Here, we study computational complexity of decision Problems.

Why?

• much simpler to deal with

• Decision version is not harder than Search version, so it is
easier to lower bound Decision version

• Less important, usually, you can use decider multiple times to
find an answer .

7

Polynomial Time

Define P (polynomial-time) to be the set of all decision

problems solvable by algorithms whose worst-case running

time is bounded by some polynomial in the input size.

Do we well understand P?

• We can prove that a problem is in P by exhibiting a

polynomial time algorithm

• It is in most cases very hard to prove a problem is not in

P.

8

Beyond P?

We have seen many problems that seem hard

• Independent Set

• 3-coloring

• Min Vertex Cover

• 3-SAT

Given a 3-CNF 𝑥1 ∨ 𝑥2 ∨ 𝑥9 ∧ 𝑥2 ∨ 𝑥3 ∨ 𝑥7 ∧ ⋯ is there a

satisfying assignment?

Common Property: If the answer is yes, there is a “short” proof

(a.k.a., certificate), that allows you to verify (in polynomial-time)

that the answer is yes.

• The proof may be hard to find

9

The independent set S

The 3-coloring

The vertex cover S

The T/F assignment

NP

Certifier: Algorithm C(x, t) is a certifier for problem A if for every

string x, the answer is “yes” iff there exists a string t such that

C(x, t) = yes.

Intuition: Certifier doesn't determine whether answer is “yes” on

its own; rather, it checks a proposed proof t that answer is “yes”.

NP: Decision problems for which there exists a poly-time

certifier.

Remark. NP stands for nondeterministic polynomial-time.

10

Example: 3SAT is in NP

Given a 3-CNF formula, is there a satisfying assignment?

Certificate: An assignment of truth values to the n boolean

variables.

Verifier: Check that each clause has at least one true

literal.

Ex: 𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ (𝑥2 ∨ 𝑥1 ∨ 𝑥3)

Certificate: 𝑥1 = 𝑇, 𝑥2 = 𝐹, 𝑥3 = 𝑇, 𝑥4 = 𝐹

Conclusion: 3-SAT is in NP

11

What do we know about NP?

• Nobody knows if all problems in NP can be done in

polynomial time, i.e. does P=NP?

• one of the most important open questions in all of science.

• Huge practical implications specially if answer is yes

• Every problem in P is in NP

one doesn’t even need a certificate for problems in P so just

ignore any hint you are given

• Every problem in NP is in exponential time

• Some problems in NP seem really hard

• nobody knows how to prove that they are really hard to

solve, i.e. 𝑃 ≠ 𝑁𝑃

12

NP Completeness

Complexity Theorists Approach: We don’t know how to prove
any problem in NP is hard. So, let’s find hardest problems in NP.

NP-hard: A problem B is NP-hard iff for any problem 𝐴 ∈ 𝑁𝑃, we
have 𝐴 ≤𝑝 𝐵

NP-Completeness: A problem B is NP-complete iff B is NP-hard
and 𝐵 ∈ 𝑁𝑃.

Motivations:

• If 𝑃 ≠ 𝑁𝑃, then every NP-Complete problems is not in P. So,
we shouldn’t try to design Polytime algorithms

• To show 𝑃 = 𝑁𝑃, it is enough to design a polynomial time
algorithm for just one NP-complete problem.

13

Cook-Levin Theorem

Theorem (Cook 71, Levin 73): 3-SAT is NP-complete, i.e., for all
problems 𝐴 ∈ 𝑁𝑃, 𝐴 ≤𝑝 3-SAT.

• So, 3-SAT is the hardest problem in NP.

What does this say about other problems of interest? Like
Independent set, Vertex Cover, …

Fact: If 𝐴 ≤𝑝 𝐵 and 𝐵 ≤𝑝 𝐶 then, 𝐴 ≤𝑝 𝐶
Pf idea: Just compose the reductions from A to B and B to C

So, if we prove 3-SAT ≤𝑝 Independent set, then Independent
Set, Clique, Vertex cover, Set cover are all NP-complete

3-SAT ≤𝑝 Independent Set ≤𝑝 Vertex Cover ≤𝑝 Set Cover

14

3-SAT ≤𝑝 Independent Set

Map a 3-CNF to (G,k). Say m is number of clauses

• Create a vertex for each literal

• Joint two literals if

• They belong to the same clause (blue edges)

• The literals are negations, e.g., 𝑥𝑖 , ഥ𝑥𝑖 (red edges)

• Set k=m

𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3

15

𝑥1

𝑥3

𝑥4

𝑥2

𝑥3

𝑥4

𝑥2

𝑥1

𝑥3

Polynomial-Time Reduction

Correctness of 3-SAT ≤𝑝 Indep Set

F satisfiable => An independent of size m

Given a satisfying assignment, Choose one node from each clause
where the literal is satisfied

𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3

Satisfying assignment: 𝑥1 = 𝑇, 𝑥2 = 𝐹, 𝑥3 = 𝑇, 𝑥4 = 𝐹

• S has exactly one node per clause => No blue edges between S

• S follows a truth-assignment => No red edges between S

• S has one node per clause => |S|=m 16

𝑥1

𝑥3

𝑥4

𝑥2

𝑥3

𝑥4

𝑥2

𝑥1

𝑥3

Correctness of 3-SAT ≤𝑝 Indep Set

An independent set of size m => A satisfying assignment

Given an independent set S of size m.

S has exactly one vertex per clause (because of blue edges)

S does not have 𝑥𝑖 , ഥ𝑥𝑖 (because of red edges)

So, S gives a satisfying assignment

Satisfying assignment: 𝑥1 = 𝐹, 𝑥2 =? , 𝑥3 = 𝑇, 𝑥4 = 𝑇
𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3

17

𝑥1

𝑥3

𝑥4

𝑥2

𝑥3

𝑥4

𝑥2

𝑥1

𝑥3

Summary

• If a problem is NP-hard it does not mean that all instances are
hared, e.g., Vertex-cover has a polynomial-time algorithm in
trees

• We learned the crucial idea of polynomial-time reduction. This
can be even used in algorithm design, e.g., we know how to
solve max-flow so we reduce image segmentation to max-flow

• NP-Complete problems are the hardest problem in NP

• NP-hard problems may not necessarily belong to NP.

• Polynomial-time reductions are transitive relations

18

