Residual Graph

Original edge: \(e = (u, v) \in E \).
- Flow \(f(e) \), capacity \(c(e) \).

Residual edge.
- "Undo" flow sent.
- \(e = (u, v) \) and \(e^R = (v, u) \).
- Residual capacity:
 \[
 c_f(e) = \begin{cases}
 c(e) - f(e) & \text{if } e \in E \\
 f(e) & \text{if } e^R \in E
 \end{cases}
 \]

Residual graph: \(G_f = (V, E_f) \).
- Residual edges with positive residual capacity.
- \(E_f = \{ e : f(e) < c(e) \} \cup \{ e : f(e^R) > 0 \} \).
Augmenting Path Algorithm

Augment(f, c, P) {
 b <- bottleneck(P)
 foreach e £ P {
 if (e £ E) f(e) <- f(e) + b
 else f(e^R) <- f(e) - b
 }
 return f
}

Ford-Fulkerson(G, s, t, c) {
 foreach e £ E f(e) <- 0
 G_f <- residual graph

 while (there exists augmenting path P) {
 f <- Augment(f, c, P)
 update G_f
 }
 return f
}
Max Flow Min Cut Theorem

Augmenting path theorem. Flow \(f \) is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the max s-t flow is equal to the value of the min s-t cut.

Proof strategy. We prove both simultaneously by showing the TFAE:

1. There exists a cut \((A, B)\) such that \(v(f) = \text{cap}(A, B) \).
2. Flow \(f \) is a max flow.
3. There is no augmenting path relative to \(f \).

(i) \(\Rightarrow \) (ii) This was the corollary to weak duality lemma.

(ii) \(\Rightarrow \) (iii) We show contrapositive.

Let \(f \) be a flow. If there exists an augmenting path, then we can improve \(f \) by sending flow along that path.
Pf of Max Flow Min Cut Theorem

(iii) => (i)
No augmenting path for f => there is a cut (A,B): v(f)=cap(A,B)

• Let f be a flow with no augmenting paths.
• Let A be set of vertices reachable from s in residual graph.
• By definition of A, s ∈ A.
• By definition of f, t ∉ A.

\[v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) \]

\[= \sum_{e \text{ out of } A} c(e) \]

\[= \text{cap}(A, B) \]
Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value $f(e)$ and every residual capacities $c_f(e)$ remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most $v(f^*) \leq nC$ iterations, if f^* is optimal flow.

Pf. Each augmentation increase value by at least 1.

Corollary. If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value f(e) is an integer.

Pf. Since algorithm terminates, theorem follows from invariant.
Applications of Max Flow:
Bipartite Matching
Maximum Matching Problem

Given an undirected graph $G = (V, E)$. A set $M \subseteq E$ is a matching if each node appears in at most one edge in M.

Goal: find a matching with largest cardinality.
Bipartite Matching Problem

Given an undirected bipartite graph \(G = (X \cup Y, E) \)
A set \(M \subseteq E \) is a matching if each node appears in at most one edge in \(M \).
Goal: find a matching with largest cardinality.
Bipartite Matching using Max Flow

Create digraph H as follows:
- Orient all edges from X to Y, and assign infinite (or unit) capacity.
- Add source s, and unit capacity edges from s to each node in L.
- Add sink t, and unit capacity edges from each node in R to t.
Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in $G =$ value of max flow in H.

Pf. \leq

Given max matching M of cardinality k.
Consider flow f that sends 1 unit along each of k edges of M.
f is a flow, and has cardinality k. ▪
Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in $G = \text{value of max flow in } H$.

Pf. (of \geq) Let f be a max flow in H of value k.

Integrality theorem \Rightarrow k is integral and we can assume f is 0-1.

Consider $M = \text{set of edges from } X \text{ to } Y \text{ with } f(e) = 1$.

- each node in X and Y participates in at most one edge in M
- $|M| = k$: consider s-t cut $(s \cup X, t \cup Y)$
Perfect Bipartite Matching
Perfect Bipartite Matching

Def. A matching $M \subseteq E$ is perfect if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings:
- Clearly we must have $|X| = |Y|$.
- What other conditions are necessary?
- What conditions are sufficient?
Perfect Bipartite Matching: \(N(S) \)

Def. Let \(S \) be a subset of nodes, and let \(N(S) \) be the set of nodes adjacent to nodes in \(S \).

Observation. If a bipartite graph \(G \) has a perfect matching, then \(|N(S)| \geq |S| \) for all subsets \(S \subseteq X \).

Pf. Each \(v \in S \) has to be matched to a unique node in \(N(S) \).
Marriage Theorem

Thm: [Frobenius 1917, Hall 1935] Let $G = (X \cup Y, E)$ be a bipartite graph with $|X| = |Y|$. Then, G has a perfect matching iff $|N(S)| \geq |S|$ for all subsets $S \subseteq X$.

Pf. \Rightarrow
This was the previous observation. If $|N(S)| < |S|$ for some S, then there is no perfect matching.
Marriage Theorem

Pf. \(\exists S \subseteq X \) s.t., \(|N(S)| < |S| \) \(\iff \) G does not a perfect matching
Formulate as a max-flow and let \((A, B)\) be the min s-t cut
G has no perfect matching \(\Rightarrow \) \(v(f^*) < |X| \). So, \(cap(A, B) < |X| \)
Define \(X_A = X \cap A, X_B = X \cap B, Y_A = Y \cap A \)
Then, \(cap(A, B) \geq |X_B| + |Y_A| \)
Since min-cut does not use \(\infty \) edges, \(N(X_A) \subseteq Y_A \)
\(|N(X_A)| \leq |Y_A| \leq cap(A, B) - |X_B| = cap(A, B) - |X| + |X_A| < |X_A| \)
Bipartite Matching Running Time

Which max flow algorithm to use for bipartite matching?

Generic augmenting path: \(O(m \text{ val}(f^*)) = O(mn) \).
Capacity scaling: \(O(m^2 \log C) = O(m^2) \).
Shortest augmenting path: \(O(m n^{1/2}) \).

Non-bipartite matching.

Structure of non-bipartite graphs is more complicated, but well-understood. \([\text{Tutte-Berge, Edmonds-Galai}]\)
Blossom algorithm: \(O(n^4) \). \([\text{Edmonds 1965}]\)
Best known: \(O(m n^{1/2}) \). \([\text{Micali-Vazirani 1980}]\)