
CSE421: Design and Analysis of Algorithms Feb 14, 2018

Lecture 17 Approximation Algorithms for Set Cover

Lecturer: Shayan Oveis Gharan Scribe:

1 Set Cover

We now design an approximation algorithm for the set cover problem.
Recall [n] = {1, . . . , n}. You are given a collection of sets S1, . . . , Sm ⊆ [n], such that ∪iSi = [n].

The goal is to find the smallest subcollection that includes all the elements. The set cover problem is
a generalization of the vertex cover problem. You can think of each vertex as a set of its connecting
edges.

The problem has many applications in practice. For example, think of the a startup who needs
a number skills including marketing, software developing, accounting, data science, design, UI, etc.
Each applicant may have a number of these skills. The startup wants to hire a minimum number
of these applicants to include all the crtitical skills that it needs. There is also a natural weighted
variant of the problem where each set has a weight and we want to choose a subcollection of the
sets with the smallest weight.

Consider the following greedy algorithm. We show that its approximation ratio is at most lnn.

Input: A collection of sets S1, . . . , Sm ⊆ [n], such that ∪iSi = [n]
Result: A small collection of sets whose union covers [n].
Let T = ∅;
while ∪i∈TSi 6= [n] do

If Sj maximizes Sj ∩ ([n]− ∪i∈TSi), add j to T ;
end
Output T .

Algorithm 1: Greedy Set Cover algorithm

Claim 1. If the smallest cover has k sets, then the algorithm finds a cover with at most k lnn sets.

Proof Suppose the OPT has k sets. Consider an iteration i of the while loop. Let R = [n]−∪i∈TSi

be the set of remaining elements. Note that R ⊆ [n]. Since OPT covers [n] it also covers R with
k sets. Therefore, there must be a set in OPT that covers at least 1/k fraction of elements of R.
Since Greedy chooses the set that covers the largest fraction of elements of R, the set that Greedy
chooses also covers at least 1/k fraction of elements of R.

Now, let us calculate how the number of remaining elements changes over the iterations of the
algorithm. At the beginning we have n. After 1 iteration (at least) n/k elements are covered so we

have at most n(1− 1/k) elements. In the second iteration (at least) n(1−1/k)
k elements are covered

so we will have (at most)

n(1− 1/k)− n(1− 1/k)

k
= n(1− 1/k)(1− 1/k) = n(1− 1/k)2.

17 Approximation Algorithms for Set Cover-1



Similarly, after the i-th iteration of the while loop at most n(1 − 1/k)i elements are remained.
Observe that we will definitely stop (and cover everything) when n(1 − 1/k)i < 1 or equivalently,
when (1− 1/k)i < 1/n.

So, the question is how large i should be such that (1− 1/k)i < 1/n. Here we use the following
inequality without proof: For all x ≥ 0,

1− x ≤ e−x.

This can be proven by writing down the taylor series expansion of the exponential function. It
follows that

(1− 1/k)i ≤ e−i/k.

So, for i = k lnn we have
(1− /k)i ≤ e−k lnn/k = e− lnn = 1/n

as desired.

The above analysis for the algorithm is in fact tight. To see this, suppose the n elements
are party of k disjoint sets S1, . . . , Sk, where the i’th set has exactly 2i elements. Thus n =
2 + 4 + . . . + 2k = 2k+1 − 2. Now add two more sets A,B which are disjoint. A contains half of
the elements of every Si, and B contains the other half. So |A| = |B| = 2k − 1. The algorithm will
pick the k sets S1, . . . , Sk as the set cover, even though A,B are also a set cover.

No better efficient algorithm is known for this problem. In fact, it is proven to be impossible
to break the Θ(log n) approximation ratio assuming NP 6= P.

In fact, one can easily modify the above algorithm to handle the situation where each set has
a cost. We pick the set that has the lowest per element cost in each step:

Input: A collection of sets S1, . . . , Sm ⊆ [n], such that ∪iSi = [n], for each set a cost
c(Si) ≥ 0.

Result: A collection of sets whose union covers [n] of small total cost.
Let T = ∅;
while ∪i∈TSi 6= [n] do

If Sj minimizes
c(Sj)

|Sj∩([n]−∪i∈TSi)| , add j to T ;

end
Output T .

Algorithm 2: Greedy Set Cover algorithm with costs

Claim 2. If the smallest cover has cost C then the algorithm finds a cover of cost at most O(C log n).

Proof For every element i, define ei to be the price of covering i, as follows. At the point ei is
covered, let L be the set of elements that have already been covered, and let Sj be the set containing
i that is about to be added to the cover. Set ei = c(Sj)/|Sj − L|.

Then we see that the total cost of the solution computed by the algorithm is exactly
∑n

i=1 ei.
Now observe that if i is covered in the j’th step of the algorithm, then at this point at least
j − 1 elements have been covered. Moreover, since there is cover of cost C, there must be some
set that covers elements at a price of C/(n − j + 1), and the algorithm picks the set that covers

17 Approximation Algorithms for Set Cover-2



elements at the lowest price. Thus the total cost of the solution found by the algorithm is at most∑n
i=1 ei ≤ C(1 + 1/2 + 1/3 + . . . + 1/n) ≤ O(C log n).

17 Approximation Algorithms for Set Cover-3


	Set Cover

