CSE421: Design and Analysis of Algorithms Feb 14, 2018

Lecture 17 Approximation Algorithms for Set Cover

Lecturer: Shayan Owveis Gharan Scribe:

1 Set Cover

We now design an approximation algorithm for the set cover problem.

Recall [n] = {1,...,n}. You are given a collection of sets Si, ..., Sy, C [n], such that U;S; = [n].
The goal is to find the smallest subcollection that includes all the elements. The set cover problem is
a generalization of the vertex cover problem. You can think of each vertex as a set of its connecting
edges.

The problem has many applications in practice. For example, think of the a startup who needs
a number skills including marketing, software developing, accounting, data science, design, Ul, etc.
Each applicant may have a number of these skills. The startup wants to hire a minimum number
of these applicants to include all the crtitical skills that it needs. There is also a natural weighted
variant of the problem where each set has a weight and we want to choose a subcollection of the
sets with the smallest weight.

Consider the following greedy algorithm. We show that its approximation ratio is at most Inn.

Input: A collection of sets St,..., Sy C [n], such that U;S; = [n]
Result: A small collection of sets whose union covers [n].
Let T = (;
while U;c7S; 75 [n] do
‘ If S; maximizes S; N ([n] — UijerS;), add j to T';
end
Output 7.

Algorithm 1: Greedy Set Cover algorithm

Claim 1. If the smallest cover has k sets, then the algorithm finds a cover with at most klnn sets.

Proof Suppose the OPT has k sets. Consider an iteration i of the while loop. Let R = [n]|—U,;erS;
be the set of remaining elements. Note that R C [n]. Since OPT covers [n] it also covers R with
k sets. Therefore, there must be a set in OPT that covers at least 1/k fraction of elements of R.
Since Greedy chooses the set that covers the largest fraction of elements of R, the set that Greedy
chooses also covers at least 1/k fraction of elements of R.

Now, let us calculate how the number of remaining elements changes over the iterations of the
algorithm. At the beginning we have n. After 1 iteration (at least) n/k elements are covered so we

n(l—1/k)
k

have at most n(1 — 1/k) elements. In the second iteration (at least) elements are covered

so we will have (at most)

(1 —1/k) — Tl(l_kl/’“) — (1= 1/k)(1 — 1/k) = n(1 — 1/k)2.

17 Approximation Algorithms for Set Cover-1

Similarly, after the i-th iteration of the while loop at most n(1 — 1/k)? elements are remained.
Observe that we will definitely stop (and cover everything) when n(1 — 1/k)* < 1 or equivalently,
when (1 —1/k)" < 1/n.

So, the question is how large i should be such that (1 —1/k)* < 1/n. Here we use the following
inequality without proof: For all > 0,

1—z<e™™.

This can be proven by writing down the taylor series expansion of the exponential function. It
follows that ‘ '
(1—1/k) < ek,

So, for i = kInn we have '
(1 _ /k)z < efklnn/k _ eflnn — 1/n

as desired. H

The above analysis for the algorithm is in fact tight. To see this, suppose the n elements
are party of k disjoint sets Si,..., Sk, where the i'th set has exactly 2! elements. Thus n =
244+ ...42F =2F1 _ 2 Now add two more sets A, B which are disjoint. A contains half of
the elements of every S;, and B contains the other half. So |A| = |B| = 2¥ — 1. The algorithm will
pick the k sets S1,...,S, as the set cover, even though A, B are also a set cover.

No better efficient algorithm is known for this problem. In fact, it is proven to be impossible
to break the ©(logn) approximation ratio assuming NP P.

In fact, one can easily modify the above algorithm to handle the situation where each set has
a cost. We pick the set that has the lowest per element cost in each step:

Input: A collection of sets St,..., Sy, C [n], such that U;S; = [n], for each set a cost
C(Sl) Z 0.
Result: A collection of sets whose union covers [n] of small total cost.
Let T = ();
while U;erS; # [n] do
‘ If S; minimizes WWE&%, add j to T ;
end
Output 7.

Algorithm 2: Greedy Set Cover algorithm with costs

Claim 2. If the smallest cover has cost C then the algorithm finds a cover of cost at most O(C'logn).

Proof For every element i, define e; to be the price of covering i, as follows. At the point e; is
covered, let L be the set of elements that have already been covered, and let S; be the set containing
i that is about to be added to the cover. Set e; = ¢(5;)/|S; — L|.

Then we see that the total cost of the solution computed by the algorithm is exactly Y " ; e;.
Now observe that if ¢ is covered in the j’th step of the algorithm, then at this point at least
j — 1 elements have been covered. Moreover, since there is cover of cost C, there must be some
set that covers elements at a price of C/(n — j + 1), and the algorithm picks the set that covers

17 Approximation Algorithms for Set Cover-2

elements at the lowest price. Thus the total cost of the solution found by the algorithm is at most
e <C(1+1/241/3+...41/n) <O(Clogn). &

17 Approximation Algorithms for Set Cover-3

	Set Cover

