CSE 421

Set Cover, Dynamic Programming

Shayan Oveis Gharan
Set Cover

Given a number of sets on a ground set of elements,

Goal: choose minimum number of sets that cover all.

 e.g., a company wants to hire employees with certain skills.
Set Cover

Given a number of sets on a ground set of elements,

Goal: choose minimum number of sets that cover all.

Set cover = 4
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes \# new elements covered

Thm: Greedy has $\ln n$ approximation ratio
A Tight Example for Greedy

Greedy = 5

OPT = 2
Thm: If the best solution has k sets, greedy finds at most $k \ln(n)$ sets.

Pf: Suppose $OPT = k$
There is set that covers $1/k$ fraction of remaining elements, since there are k sets that cover all remaining elements.
So in each step, algorithm will cover $1/k$ fraction of remaining elements.

#elements uncovered after t steps

$$\leq n \left(1 - \frac{1}{k}\right)^t \leq e^{-t/k}$$

So after $t = k \ln n$ steps, # uncovered elements < 1.
Approximation Alg Summary

• To design approximation Alg, always find a way to lower bound OPT

• The best known approximation Alg for vertex cover is the greedy.
 – It has been open for 40 years to obtain a polynomial time algorithm with approximation ratio better than 2

• The best known approximation Alg for set cover is the greedy.
 – It is NP-Complete to obtain better than ln n approximation ratio for set cover.
Dynamic Programming
Algorithmic Paradigm

Greedy: Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer: Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of **overlapping** sub-problems, and build up solutions to larger and larger sub-problems. Memorize the answers to obtain polynomial time ALG.
Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.

Dynamic programming = planning over time.

Secretary of Defense was hostile to mathematical research. Bellman sought an impressive name to avoid confrontation.

- "it's impossible to use dynamic in a pejorative sense"
- "something not even a Congressman could object to"
Dynamic Programming Applications

Areas:

- Bioinformatics
- Control Theory
- Information Theory
- Operations Research
- Computer Science: Theory, Graphics, AI, …

Some famous DP algorithms

- Viterbi for hidden Markov Model
- Unix diff for comparing two files.
- Smith-Waterman for sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.
Dynamic Programming

• Give a solution of a problem using smaller (overlapping) sub-problems where the parameters of all sub-problems are determined in-advance

• Useful when the same subproblems show up again and again in the solution.
Weighted Interval Scheduling
Interval Scheduling

- Job j starts at $s(j)$ and finishes at $f(j)$ and has weight w_j
- Two jobs compatible if they don’t overlap.
- Goal: find maximum weight subset of mutually compatible jobs.
Unweighted Interval Scheduling: Review

Recall: Greedy algorithm works if all weights are 1:
- Consider jobs in ascending order of finishing time
- Add job to a subset if it is compatible with prev added jobs.

OBS: Greedy ALG fails spectacularly (no approximation ratio) if arbitrary weights are allowed:

![Diagram showing the difference between scheduling by finish time and by weight when weights are 1 and 1000]
Weighted Job Scheduling by Induction

Suppose 1, ..., \(n \) are all jobs. Let us use induction:

IH (strong ind): Suppose we can compute the optimum job scheduling for \(< n\) jobs.

IS: Goal: For any \(n \) jobs we can compute OPT.

Case 1: Job \(n \) is not in OPT.
-- Then, just return OPT of 1, ..., \(n - 1 \).

Case 2: Job \(n \) is in OPT.
-- Then, delete all jobs not compatible with \(n \) and recurse.

Q: Are we done?
A: No, How many subproblems are there? Potentially \(2^n \) all possible subsets of jobs.
IS: For jobs 1,…,n we want to compute OPT

Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$

Case 1: Suppose OPT has job n.
- So, all jobs i that are not compatible with n are not OPT
- Let $p(n) =$ largest index $i < n$ such that job i is compatible with n.
- Then, we just need to find OPT of $1, \ldots, p(n)$
Sorting to reduce Subproblems

IS: For jobs 1,…,n we want to compute OPT

Sorting Idea: Label jobs by finishing time \(f(1) \leq \cdots \leq f(n) \)

Case 1: Suppose OPT has job n.
- So, all jobs i that are not compatible with n are not OPT
- Let \(p(n) = \) largest index \(i < n \) such that job i is compatible with n.
- Then, we just need to find OPT of 1, …, \(p(n) \)

Case 2: OPT does not select job n.
- Then, OPT is just the optimum 1, …, \(n - 1 \)

Q: Have we made any progress (still reducing to two subproblems)?
A: Yes! This time every subproblem is of the form 1, …, \(i \) for some \(i \)
So, at most \(n \) possible subproblems.
Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time \(f(1) \leq \cdots \leq f(n) \)

Let \(\text{OPT}(j) \) denote the OPT solution of \(1, \ldots, j \)

To solve \(\text{OPT}(j) \):

Case 1: \(\text{OPT}(j) \) has job \(j \).
 - So, all jobs \(i \) that are not compatible with \(j \) are not \(\text{OPT}(j) \)
 - Let \(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).
 - So \(\text{OPT}(j) = \text{OPT}(p(j)) \cup \{j\} \).

Case 2: \(\text{OPT}(j) \) does not select job \(j \).
 - Then, \(\text{OPT}(j) = \text{OPT}(j - 1) \)

\[
\text{OPT}(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left(w_j + \text{OPT}(p(j)), \text{OPT}(j - 1) \right) & \text{otherwise}
\end{cases}
\]
Input: n, $s(1), \ldots, s(n)$ and $f(1), \ldots, f(n)$ and w_1, \ldots, w_n.

Sort jobs by finish times so that $f(1) \leq f(2) \leq \cdots f(n)$.

Compute $p(1), p(2), \ldots, p(n)$

Compute-Opt(j) {
 if $(j = 0)$
 return 0
 else
 return max($w_j + \text{Compute-Opt}(p(j))$, Compute-Opt$(j-1)$)
}
Even though we have only n subproblems, we do not store the solution to the subproblems.

So, we may re-solve the same problem many many times.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.
Algorithm with Memorization

Memoization. Compute and Store the solution of each sub-problem in a cache the first time that you face it. lookup as needed.

Input: n, s(1), ..., s(n) and f(1), ..., f(n) and w₁, ..., wₙ.

Sort jobs by finish times so that f(1) ≤ f(2) ≤ … f(n).

Compute p(1), p(2), ..., p(n)

for j = 1 to n
 M[j] = empty
M[0] = 0

M-Compute-Opt(j) {
 if (M[j] is empty)
 M[j] = max(w_j + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
 return M[j]
}
Bottom up Dynamic Programming

You can also avoid recursion
• recursion may be easier conceptually when you use induction

Input: n, $s(1), \ldots, s(n)$ and $f(1), \ldots, f(n)$ and w_1, \ldots, w_n.

Sort jobs by finish times so that $f(1) \leq f(2) \leq \cdots f(n)$.

Compute $p(1), p(2), \ldots, p(n)$

Iterative-Compute-Opt {
 $M[0] = 0$
 for $j = 1$ to n
 $M[j] = \max(w_j + M[p(j)], M[j-1])$
}

Output $M[n]$

Claim: $M[j]$ is value of OPT(j)
Timing: Easy. Main loop is $O(n)$; sorting is $O(n \log n)$
Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.

$p(j) =$ largest index $i < j$ such that job i is compatible with j.

<table>
<thead>
<tr>
<th>j</th>
<th>w_j</th>
<th>p(j)</th>
<th>OPT(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$p(j) =$ largest index $i < j$ such that job i is compatible with j.

<table>
<thead>
<tr>
<th>j</th>
<th>w_j</th>
<th>p(j)</th>
<th>OPT(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).

\(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).

<table>
<thead>
<tr>
<th>j</th>
<th>(w_j)</th>
<th>(p(j))</th>
<th>OPT(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).
\(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$p(j) =$ largest index $i < j$ such that job i is compatible with j.

<table>
<thead>
<tr>
<th>j</th>
<th>w_j</th>
<th>$p(j)$</th>
<th>OPT(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
p(j) = largest index $i < j$ such that job i is compatible with j.

<table>
<thead>
<tr>
<th>j</th>
<th>w_j</th>
<th>p(j)</th>
<th>OPT(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).
\(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).
\(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$p(j) =$ largest index $i < j$ such that job i is compatible with j.
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$p(j) = \text{largest index } i < j \text{ such that job } i \text{ is compatible with } j.$
Knapsack Problem
Knapsack Problem

Given n objects and a "knapsack."
Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$.
Knapsack has capacity of W kilograms.

Goal: fill knapsack so as to maximize total value.

Ex: OPT is { 3, 4 } with value 40.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

Ex: {$5, 2, 1$} achieves only value $= 35 \Rightarrow$ greedy not optimal.

Greedy: repeatedly add item with maximum ratio v_i / w_i.