CSE 421

Vertex Cover / Set Cover

Shayan Oveis Gharan
Partition into \(\frac{n}{5} \) sets. Sort each set and set \(w = \text{Sel(midpoints, n/10)} \)

- \(|S_{<}(w)| \geq 3 \left(\frac{n}{10} \right) = \frac{3n}{10} \)
 \(\Rightarrow \frac{3n}{10} \leq |S_{<}(w)|, |S_{>}(w)| \leq \frac{7n}{10} \)

- \(|S_{>}(w)| \geq 3 \left(\frac{n}{10} \right) = \frac{3n}{10} \)

\[
T(n) = T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right) + O(n) \Rightarrow T(n) = O(n)
\]
Sel(S, k) {
 n ← |S|
 If (n < ??) return ??
 Partition S into n/5 sets of size 5
 Sort each set of size 5 and let M be the set of medians, so
 |M|=n/5
 Let w=Sel(M,n/10)
 For i=1 to n{
 If $x_i < w$ add x to $S_<(w)$
 If $x_i > w$ add x to $S_(w)$
 If $x_i = w$ add x to $S_(=w)$
 }
 If (k ≤ |$S_<(w)$|)
 return Sel($S_<(w)$, k)
 else if (k ≤ |$S_<(w)$| + |$S_(=w)$|)
 return w;
 else
 return Sel($S_(=w)$, k − |$S_<(w)$| − |$S_(=w)$|)
}
D&C Summary

Idea:

“Two halves are better than a whole”
- if the base algorithm has super-linear complexity.

“If a little's good, then more's better”
- repeat above, recursively

- Applications: Many.
 - Binary Search, Merge Sort, (Quicksort),
 - Root of a Function
 - Closest points,
 - Integer multiplication
 - Median
 - Matrix Multiplication
Approximation Algorithms
How to deal with NP-complete Problem

Many of the important problems in real world are NP-complete.
 SAT, Set Cover, Graph Coloring, TSP, Max IND Set, Vertex Cover, …

So, we cannot find optimum solutions in polynomial time. What to do instead?

• Find optimum solution of special cases (e.g., random inputs)

• Find near optimum solution in the worst case
Approximation Algorithm

Polynomial-time Algorithms with a guaranteed approximation ratio.

\[\alpha = \frac{\text{Cost of computed solution}}{\text{Cost of the optimum}} \]

worst case over all instances.

Goal: For each NP-hard problem find an approximation algorithm with the best possible approximation ratio.
Vertex Cover

Given a graph $G=(V,E)$, Find smallest set of vertices touching every edge
Greedy algorithms are typically used in practice to find a (good) solution to NP-hard problems

Strategy (1): Iteratively, include a vertex that covers most new edges

Q: Does this give an optimum solution?
A: No,
Greedy (1): Pick vertex that covers the most

Greedy Vertex cover = 20
OPT Vertex cover = 8
Greedy (1): Pick vertex that covers the most

Greedy Vertex cover = 20

OPT Vertex cover = 8
Greedy (1): Pick vertex that covers the most

n vertices. Each vertex has one edge into each B_i

Greedy pick bottom vertices $= n + \frac{n}{2} + \frac{n}{3} + \cdots + 1 \approx n \ln n$

OPT pick top vertices $= n$
A Different Greedy Rule

Greedy 2: Iteratively, pick *both endpoints* of an uncovered edge.

Vertex cover = 6
Greedy 2: Pick Both endpoints of an uncovered edge

Greedy vertex cover = 16
OPT vertex cover = 8
Greedy (2) gives 2-approximation

Thm: Size of greedy (2) vertex cover is at most twice as big as size of optimal cover

Pf: Suppose Greedy (2) picks endpoints of edges e_1, \ldots, e_k. Since these edges do not touch, every valid cover must pick one vertex from each of these edges!

i.e., $OPT \geq k$.

But the size of greedy cover is $2k$. So, Greedy is a 2-approximation.
Set Cover

Given a number of sets on a ground set of elements,

Goal: choose minimum number of sets that cover all.

e.g., a company wants to hire employees with certain skills.
Set Cover

Given a number of sets on a ground set of elements,

Goal: choose minimum number of sets that cover all.

Set cover = 4
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes the number of new elements covered.

Thm: Greedy has $\ln n$ approximation ratio.
A Tight Example for Greedy

Greedy = 5

OPT = 2
Greedy Gives O(log(n)) approximation

Thm: If the best solution has \(k\) sets, greedy finds at most \(k \ln(n)\) sets.

Pf: Suppose \(\text{OPT} = k\)
There is set that covers \(1/k\) fraction of remaining elements, since there are \(k\) sets that cover all remaining elements.
So in each step, algorithm will cover \(1/k\) fraction of remaining elements.

#elements uncovered after \(t\) steps

\[
\leq n \left(1 - \frac{1}{k}\right)^t \leq ne^{-\frac{t}{k}}
\]

So after \(t = k \ln n\) steps, # uncovered elements < 1.
Approximation Alg Summary

• To design approximation Alg, always find a way to lower bound OPT

• The best known approximation Alg for vertex cover is the greedy.
 – It has been open for 40 years to obtain a polynomial time algorithm with approximation ratio better than 2

• The best known approximation Alg for set cover is the greedy.
 – It is NP-Complete to obtain better than $\ln n$ approximation ratio for set cover.