CSE 421

Greedy Alg: Union Find/Dijkstra’s Alg

Shayan Oveis Gharan
Dijkstra’s Algorithm

Dijkstra(G, c, s) {
 \(d[s] \leftarrow 0\)
 foreach (v ∈ V) \(d[v] \leftarrow \infty\) //This is the key of node v
 foreach (v ∈ V) insert v onto a priority queue Q
 Initialize set of explored nodes \(S \leftarrow \{s\}\)

 while (Q is not empty) {
 u ← delete min element from Q
 S ← \(S \cup \{u\}\)
 foreach (edge e = (u, v) incident to u)
 if ((v \∉ S) and \((d[u] + c_e < d[v])\))
 \(d[v] \leftarrow d[u] + c_e\)
 Decrease key of v to \(d[v]\).
 \(Parent(v) \leftarrow u\)
 }
}
Dijkstra’s Algorithm: Example
Disjkstra’s Algorithm: Correctness

Prove by induction that throughout the algorithm, for any \(u \in S \), the path \(P_u \) in the shortest from \(s \) to \(u \).

Base Case: This is always true when \(S = \{s\} \).

IH: Suppose \(|S| = k \) and the claim holds for \(S \).

IS: Say \(v \) is the \(k+1 \)-st vertex that we add to \(S \). Let \(\{u,v\} \) be last edge on \(P_v \).

If \(P_v \) is not the shortest path there is a path \(P \) to \(S \) which is shorter.

Consider the **first** time that \(P \) leaves \(S \) (with edge \(\{x,y\} \)).

\(S \rightarrow x \) has weight (at least) \(d(x) \)

So, \(c(P) \geq d(x) + c_{x,y} \geq d(v) = c(P_v) \). A contradiction.
Remarks on Dijkstra’s Algorithm

- Algorithm also produces a tree of shortest paths to s following Parent links
- Algorithm works on directed graph (with nonnegative weights)
- The algorithm fails with negative edge weights.
 - e.g., some airline tickets

Why does it fail?

- Dijkstra’s algorithm is similar to BFS:
 - Substitute every edge with $c_e = k$ with a path of length k, then run BFS.
Implementing Dijkstra’s Algorithm

Priority Queue: Elements each with an associated key

Operations
- **Insert**
- **Find-min**
 - Return the element with the smallest key
- **Delete-min**
 - Return the element with the smallest key and delete it from the data structure
- **Decrease-key**
 - Decrease the key value of some element

Implementations

Arrays:
- $O(n)$ time find/delete-min,
- $O(1)$ time insert/decrease key

Binary Heaps:
- $O(\log n)$ time insert/decrease-key/delete-min,
- $O(1)$ time find-min
Dijkstra’s Algorithm

Runs in $O((n+m)\log n)$.

Dijkstra(G, c, s) {
 $d[s] \leftarrow 0$
 foreach ($v \in V$) $d[v] \leftarrow \infty$ //This is the key of node v
 foreach ($v \in V$) insert v onto a priority queue Q
 Initialize set of explored nodes $S \leftarrow \{s\}$

 while (Q is not empty) {
 $u \leftarrow$ delete min element from Q
 $S \leftarrow S \cup \{u\}$
 foreach (edge $e = (u, v)$ incident to u)
 if (($v \not\in S$) and ($d[u]+c_e < d[v]$))
 $d[v] \leftarrow d[u]+c_e$
 Decrease key of v to $d[v]$.
 $Parent(v) \leftarrow u$
 }
}
Summary (Greedy Algorithms)

- **Greedy Stays Ahead**: Interval Scheduling, Dijkstra’s algorithm

- **Structural**: Interval Partitioning

- **Exchange Arguments**: MST, Kruskal’s Algorithm, Prim’s Algorithm

- **Data Structures**: Union Find, Heap
Divide and Conquer Approach
Divide and Conquer

Similar to algorithm design by induction, we reduce a problem to several subproblems. Typically, each sub-problem is at most a constant fraction of the size of the original problem.

Recursively solve each subproblem
Merge the solutions

Examples:
• Mergesort, Binary Search, Strassen’s Algorithm,
A Classical Example: Merge Sort

Split to n/2

sort recursively

merge
Why Balanced Partitioning?

An alternative "divide & conquer" algorithm:
• Split into n-1 and 1
• Sort each sub problem
• Merge them

Runtime

\[T(n) = T(n - 1) + T(1) + n \]

Solution:

\[
\begin{align*}
T(n) &= n + T(n - 1) + T(1) \\
&= n + n - 1 + T(n - 2) \\
&= n + n - 1 + n - 2 + T(n - 3) \\
&= n + n - 1 + n - 2 + \cdots + 1 = O(n^2)
\end{align*}
\]
D&C: The Key Idea

Suppose we've already invented Bubble-Sort, and we know it takes \(n^2 \)

Try just one level of divide & conquer:

- Bubble-Sort(first \(n/2 \) elements)
- Bubble-Sort(last \(n/2 \) elements)

Merge results

Time: \(2 \left(\frac{n}{2} \right)^2 + n = \frac{n^2}{2} + n \ll n^2 \)

Almost twice as fast!
D&C approach

• “the more dividing and conquering, the better”
 • Two levels of D&C would be almost 4 times faster, 3 levels almost 8, etc., even though overhead is growing.
 • Best is usually full recursion down to a small constant size (balancing "work" vs "overhead").
 In the limit: you’ve just rediscovered mergesort!

• Even unbalanced partitioning is good, but less good
 • Bubble-sort improved with a 0.1/0.9 split:
 \[(.1n)^2 + (.9n)^2 + n = .82n^2 + n\]
 The 18% savings compounds significantly if you carry recursion to more levels, actually giving \(O(n \log n)\), but with a bigger constant.

• This is why Quicksort with random splitter is good – badly unbalanced splits are rare, and not instantly fatal.
Finding the Root of a Function
Finding the Root of a Function

Given a continuous function \(f \) and two points \(a < b \) such that
\[
\begin{align*}
 f(a) &\leq 0 \\
 f(b) &\geq 0
\end{align*}
\]
Find an approximate root of \(f \) (a point \(c \) where \(f(c) = 0 \)).

\(f \) has a root in \([a, b]\) by the intermediate value theorem.

Note that roots of \(f \) may be irrational.
So, we want to approximate the root with an arbitrary precision!
A Naive Approach

Suppose we want ϵ approximation to a root.

Divide $[a,b]$ into $n = \frac{b-a}{\epsilon}$ intervals. For each interval check

$$f(x) \leq 0, f(x + \epsilon) \geq 0$$

This runs in time $O(n) = O\left(\frac{b-a}{\epsilon}\right)$

Can we do faster?
D&C Approach (Based on Binary Search)

Bisection\((a, b, \varepsilon)\)

if \((b - a) < \varepsilon\) then
 return (a)
else
 \(m \leftarrow (a + b)/2\)
 if \(f(m) \leq 0\) then
 return(Bisection(c, b, \varepsilon))
 else
 return(Bisection(a, c, \varepsilon))
Time Analysis

Let \(n = \frac{a-b}{\epsilon} \)

And \(c = \frac{(a + b)}{2} \)

Always half of the intervals lie to the left and half lie to the right of \(c \)

So,

\[
T(n) = T\left(\frac{n}{2}\right) + O(1)
\]

i.e., \(T(n) = O(\log n) = O(\log \frac{a-b}{\epsilon}) \)
Finding the Closest Pair of Points
Closest Pair of Points (non geometric)

Given n points and arbitrary distances between them, find the closest pair. (E.g., think of distance as airfare – definitely not Euclidean distance!)

Must look at all n choose 2 pairwise distances, else any one you didn’t check might be the shortest.

i.e., you have to read the whole input
Closest Pair of Points (1-dimensional)

Given n points on the real line, find the closest pair

Fact: Closest pair is adjacent in ordered list
So, first sort, then scan adjacent pairs.
Time $O(n \log n)$ to sort, if needed, Plus $O(n)$ to scan adjacent pairs

Key point: do not need to calc distances between all pairs: exploit geometry + ordering
Closest Pair of Points (2-dimensions)

Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.

Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force: Check all pairs of points p and q with $\Theta(n^2)$ time.

Assumption: No two points have same x coordinate.
Closest Pair of Points (2-dimensions)

Given \(n \) points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force: Check all pairs of points \(p \) and \(q \) with \(\Theta(n^2) \) time.

Assumption: No two points have same x coordinate.
A Divide and Conquer Alg

Divide: draw vertical line L with $\approx \frac{n}{2}$ points on each side.

Conquer: find closest pair on each side, recursively.

Combine to find closest pair overall

Return best solutions

It seems like $\Theta(n^2)$?