
CSE 421

Greedy Alg: Union Find/Dijkstra’s Alg

Shayan Oveis Gharan

1

Dijkstra’s Algorithm

Dijkstra(G, c, s) {

𝒅 𝒔 ← 𝟎

foreach (v  V) d[v]   //This is the key of node v

foreach (v  V) insert v onto a priority queue Q

Initialize set of explored nodes S  {s}

while (Q is not empty) {

u  delete min element from Q

S  S  { u }

foreach (edge e = (u, v) incident to u)

if ((v  S) and (d[u]+ce < d[v]))

𝒅 𝒗 ← 𝒅 𝒖 + 𝒄𝒆
Decrease key of v to d[v].

𝑷𝒂𝒓𝒆𝒏𝒕 𝒗 ← 𝒖

}

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Disjkstra’s Algorithm: Correctness

Prove by induction that throughout the algorithm, for any 𝑢 ∈ 𝑆,

the path 𝑃𝑢 in the shortest from s to u.

Base Case: This is always true when 𝑆 = 𝑠 .

IH: Suppose |𝑆| = 𝑘 and the claim holds for S

IS: Say 𝑣 is the k+1-st vertex that

we add to S. Let {u,v} be last edge on 𝑃𝑣 .

If 𝑃𝑣 is not the shortest path there

is a path 𝑃 to S which is shorter.

Consider the first time that P leaves S

(with edge {x,y}).

S -> x has weight (at least) d(x)

So, 𝑐 𝑃 ≥ 𝑑 𝑥 + 𝑐𝑥,𝑦 ≥ 𝑑 𝑣 = 𝑐 𝑃𝑣 .

A contradiction.

v

y

u

s

x

𝑃𝑣

𝑃

Remarks on Dijkstra’s Algorithm

• Algorithm also produces a tree of shortest paths to s following

Parent links

• Algorithm works on directed graph (with nonnegative weights)

• The algorithm fails with negative edge weights.

• e.g., some airline tickets

Why does it fail?

• Dijkstra’s algorithm is similar to BFS:

• Subtitute every edge with 𝑐𝑒 = 𝑘 with a path of length k, then run BFS.

Implementing Dijkstra’s Algorithm

Priority Queue: Elements each with an associated key Operations

• Insert

• Find-min
– Return the element with the smallest key

• Delete-min
– Return the element with the smallest key and delete it from the data structure

• Decrease-key
– Decrease the key value of some element

Implementations

Arrays:
• O(n) time find/delete-min,

• O(1) time insert/decrease key

Binary Heaps:
• O(log n) time insert/decrease-key/delete-min,

• O(1) time find-min

Dijkstra’s Algorithm

Runs in O((n+m)log n).

Dijkstra(G, c, s) {

𝒅 𝒔 ← 𝟎

foreach (v  V) d[v]   //This is the key of node v

foreach (v  V) insert v onto a priority queue Q

Initialize set of explored nodes S  {s}

while (Q is not empty) {

u  delete min element from Q

S  S  { u }

foreach (edge e = (u, v) incident to u)

if ((v  S) and (d[u]+ce < d[v]))

𝒅 𝒗 ← 𝒅 𝒖 + 𝒄𝒆
Decrease key of v to d[v].

𝑷𝒂𝒓𝒆𝒏𝒕 𝒗 ← 𝒖

}

𝑂(𝑚) of decrease key,

each runs in 𝑂(log 𝑛)

𝑂(𝑛) of delete min,

each in O(log n)

Summary (Greedy Algorithms)

• Greedy Stays Ahead: Interval Scheduling, Dijkstra’s

algorithm

• Structural: Interval Partitioning

• Exchange Arguments: MST, Kruskal’s Algorithm, Prim’s

Algorithm

• Data Structures: Union Find, Heap

Divide and Conquer Approach

Divide and Conquer

Similar to algorithm design by induction, we reduce a

problem to several subproblems.

Typically, each sub-problem is

at most a constant fraction of

the size of the original problem

Recursively solve each subproblem

Merge the solutions

Examples:

• Mergesort, Binary Search, Strassen’s Algorithm,
Lo

g
n

 le
ve

ls

n

n/2n/2

n/4

A Classical Example: Merge Sort

A

sort
recursivelySplit to n/2

merge

Why Balanced Partitioning?

An alternative "divide & conquer" algorithm:

• Split into n-1 and 1

• Sort each sub problem

• Merge them

Runtime

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 1 + 𝑛

Solution:

𝑇 𝑛 = 𝑛 + 𝑇 𝑛 − 1 + 𝑇 1

= 𝑛 + 𝑛 − 1 + 𝑇 𝑛 − 2

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 + 𝑇 𝑛 − 3

= 𝑛 + 𝑛 − 1 + 𝑛 − 2 +⋯+ 1 = 𝑂(𝑛2)

D&C: The Key Idea

Suppose we've already invented Bubble-Sort, and we know
it takes 𝑛2

Try just one level of divide & conquer:

Bubble-Sort(first n/2 elements)

Bubble-Sort(last n/2 elements)

Merge results

Time: 2 (𝑛/2)2 + 𝑛 = 𝑛2/2 + 𝑛 ≪ 𝑛2

Almost twice as fast!

D&C in a

nutshell

D&C approach

• “the more dividing and conquering, the better”

• Two levels of D&C would be almost 4 times faster, 3 levels
almost 8, etc., even though overhead is growing.

• Best is usually full recursion down to a small constant size
(balancing "work" vs "overhead").

In the limit: you’ve just rediscovered mergesort!

• Even unbalanced partitioning is good, but less good

• Bubble-sort improved with a 0.1/0.9 split:

(.1𝑛)2 + (.9𝑛)2 + 𝑛 = .82𝑛2 + 𝑛

The 18% savings compounds significantly if you carry

recursion to more levels, actually giving 𝑂(𝑛 log 𝑛), but

with a bigger constant.

• This is why Quicksort with random splitter is good – badly

unbalanced splits are rare, and not instantly fatal.

Finding the Root of a Function

Finding the Root of a Function

Given a continuous function f and two points a < b such that

𝑓 𝑎 ≤ 0
𝑓 𝑏 ≥ 0

Find an approximate root of f (a point 𝑐 where 𝑓 𝑐 = 0).

f has a root in [𝑎, 𝑏] by

intermediate value theorem

Note that roots of f may be irrational,

So, we want to approximate

the root with an arbitrary precision!
a b

f 𝑥 = sin 𝑥 −
100

𝑥
+ 𝑥4

A Naiive Approch

Suppose we want 𝜖 approximation to a root.

Divide [a,b] into 𝑛 =
𝑏−𝑎

𝜖
intervals. For each interval check

𝑓 𝑥 ≤ 0, 𝑓 𝑥 + 𝜖 ≥ 0

This runs in time 𝑂 𝑛 = 𝑂(
𝑏−𝑎

𝜖
)

Can we do faster?

a b

D&C Approach (Based on Binary Search)

Bisection(a,b, e)

if 𝑏 − 𝑎 < 𝝐 then

return (a)

else

𝑚 ← (𝑎 + 𝑏)/2

if 𝑓 𝑚 ≤ 0 then

return(Bisection(c, b, e))

else

return(Bisection(a, c, e))

a bc

Time Analysis

Let 𝑛 =
𝑎−𝑏

𝜖

And 𝑐 = (𝑎 + 𝑏)/2

Always half of the intervals lie to

the left and half lie to the right of c

So,

𝑇 𝑛 = 𝑇
𝑛

2
+ 𝑂(1)

i.e., 𝑇 𝑛 = 𝑂(log 𝑛) = 𝑂(log
𝑎−𝑏

𝜖
) a bc

n/2n/2

Finding the Closest Pair of Points

Closest Pair of Points (non geometric)

Given n points and arbitrary distances between them, find the
closest pair. (E.g., think of distance as airfare – definitely not
Euclidean distance!)

Must look at all n choose 2 pairwise distances, else

any one you didn’t check might be the shortest.

i.e., you have to read the whole input

(… and all the rest of the (n) edges…)2

Closest Pair of Points (1-dimension)

Given n points on the real line, find the closest pair

Fact: Closest pair is adjacent in ordered list

So, first sort, then scan adjacent pairs.

Time O(n log n) to sort, if needed, Plus O(n) to scan adjacent pairs

Key point: do not need to calc distances between all pairs: exploit
geometry + ordering

Closest Pair of Points (2-dimensions)

Given n points in the plane, find a pair with smallest

Euclidean distance between them.

Fundamental geometric primitive.
Graphics, computer vision, geographic information systems, molecular

modeling, air traffic control.

Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force: Check all pairs of points p and q with (n2)

time.

Assumption: No two points have same x coordinate.

Closest Pair of Points (2-dimensions)

Given n points in the plane, find a pair with smallest

Euclidean distance between them.

Fundamental geometric primitive.
Graphics, computer vision, geographic information systems, molecular

modeling, air traffic control.

Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force: Check all pairs of points p and q with (n2)

time.

Assumption: No two points have same x coordinate.

A Divide and Conquer Alg

Divide: draw vertical line L with ≈ n/2 points on each side.

Conquer: find closest pair on each side, recursively.

Combine to find closest pair overall

Return best solutions

12

21
8

L

seems like

(n2) ?

