CSE 421

Greedy Alg: Interval Partitioning / Job Scheduling

Shayan Oveis Gharan
Interval Partitioning Technique: Structural
Interval Partitioning

Lecture \(j \) starts at \(s(j) \) and finishes at \(f(j) \).

Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.
A Structural Lower-Bound on OPT

Def. The depth of a set of open intervals is the maximum number that contain any given time.

Key observation. Number of classrooms needed \(\geq \) depth.
A Greedy Algorithm

Greedy algorithm: Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

Sort intervals by starting time so that $s_1 \leq s_2 \leq \ldots \leq s_n$.

$d \leftarrow 0$

for $j = 1$ to n {
 if (lect j is compatible with some classroom k, $1 \leq k \leq d$)
 schedule lecture j in classroom k
 else
 allocate a new classroom $d + 1$
 schedule lecture j in classroom $d + 1$
 $d \leftarrow d + 1$
}

Implementation: Exercise!
Correctness

Observation: Greedy algorithm never schedules two incompatible lectures in the same classroom.

Theorem: Greedy algorithm is optimal.

Pf (exploit structural property).

Let \(d \) = number of classrooms that the greedy algorithm allocates. Classroom \(d \) is opened because we needed to schedule a job, say \(j \), that is incompatible with all \(d-1 \) previously used classrooms. Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than \(s(j) \).

Thus, we have \(d \) lectures overlapping at time \(s(j) + \epsilon \), i.e. \(\text{depth} \geq d \)

“OPT Observation” \(\Rightarrow \) all schedules use \(\geq \text{depth} \) classrooms, so \(d = \text{depth} \) and greedy is optimal. \(\blacksquare \)
Minimum Spanning Tree (MST)
Technique: Exchange Argument
Minimum Spanning Tree (MST)

Given a connected graph $G = (V, E)$ with real-valued edge weights c_e, an MST is a subset of the edges $T \subseteq E$ such that T is a spanning tree whose sum of edge weights is minimized.

$G = (V, E)$

$c(T) = \sum_{e \in T} c_e = 50$
Applications

Network design:
- telephone, electrical, hydraulic, TV cable, computer, road

Approximation algorithms for NP-hard problems:
- traveling salesperson problem, Steiner tree

Indirect applications:
- Graph clustering
- max bottleneck paths
- LDPC codes for error correction
- image registration with Renyi entropy
- learning salient features for real-time face verification
- reducing data storage in sequencing amino acids in a protein
- model locality of particle interactions in turbulent fluid flows
- autoconfig protocol for Ethernet bridging to avoid cycles in a network
In a graph $G = (V, E)$ a cut is a bipartition of V into sets $S, V - S$ for some $S \subseteq V$. We show it by $(S, V - S)$.

An edge $e = \{u, v\}$ is in the cut $(S, V - S)$ if exactly one of u, v is in S.
Properties of the OPT

Simplifying assumption: All edge costs c_e are distinct.

Cut property: Let S be any subset of nodes (called a cut), and let e be the min cost edge with exactly one endpoint in S. Then every MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C. Then no MST contains f.

red edge is in the MST

Green edge is not in the MST
Cycles and Cuts

Claim. A cycle crosses a cut (from S to V-S) an even number of times.

Pf. (by picture)
Cut Property: Proof

Simplifying assumption: All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the T^* contains e.

Pf. By contradiction

Suppose $e = \{u,v\}$ does not belong to T^*.

Adding e to T^* creates a cycle C in T^*.

There is a path from u to v in T^* \Rightarrow there exists another edge, say f, that leaves S.

$T = T^* \cup \{e\} - \{f\}$ is also a spanning tree.

Since $c_e < c_f$, $c(T) < c(T^*)$.

This is a contradiction.
Cycle Property: Proof

Simplifying assumption: All edge costs c_e are distinct.

Cycle property: Let C be any cycle in G, and let f be the \textit{max} cost edge belonging to C. Then the MST T^* does not contain f.

\textbf{Pf.} (By contradiction)

Suppose f belongs to T^*.

Deleting f from T^* cuts T^* into two connected components. There exists another edge, say e, that is in the cycle and connects the components.

\[T = T^* \cup \{e\} - \{f\} \text{ is also a spanning tree.} \]

Since $c_e < c_f$, $c(T) < c(T^*)$.

This is a contradiction.
Kruskal’s Algorithm [1956]

Kruskal(G, c) {
 Sort edges weights so that $c_1 \leq c_2 \leq \ldots \leq c_m$.
 $T \leftarrow \emptyset$

 foreach $(u \in V)$ make a set containing singleton \{u\}

 for $i = 1$ to m
 Let $(u,v) = e_i$
 if $(u$ and v are in different sets) {
 $T \leftarrow T \cup \{e_i\}$
 merge the sets containing u and v
 }
 return T
}
Kruskal’s Algorithm: Pf of Correctness

Consider edges in ascending order of weight.

Case 1: If adding \(e \) to \(T \) creates a cycle, discard \(e \) according to cycle property.

Case 2: Otherwise, insert \(e = (u, v) \) into \(T \) according to cut property where \(S = \) set of nodes in \(u \)'s connected component.
Implementation: Kruskal’s Algorithm

Implementation. Use the union-find data structure.

• Build set T of edges in the MST.
• Maintain a set for each connected component.
• $O(m \log n)$ for sorting and $O(m \log n)$ for union-find

```plaintext
Kruskal(G, c) {
    Sort edges weights so that $c_1 \leq c_2 \leq \ldots \leq c_m$.
    $T \leftarrow \emptyset$

    foreach ($u \in V$) make a set containing singleton $\{u\}$

    for $i = 1$ to $m$
        Let $(u, v) = e_i$
        if (u and v are in different sets) {
            $T \leftarrow T \cup \{e_i\}$
            merge the sets containing $u$ and $v$
        }
    return $T$
}
```