
CSE421: Design and Analysis of Algorithms January 25, 2018

Homework 4

Shayan Oveis Gharan Due: Feb 1, 2018 at 5:00 PM

Please see https://courses.cs.washington.edu/courses/cse421/18wi/grading.html for general guide-
lines about Homework problems.

Most of the problems only require one or two key ideas for their solution. It will help you a lot
to spell out these main ideas so that you can get most of the credit for a problem even if you err
on the finer details. Please justify all answers.

P1) In class we discussed that we can solve the interval scheduling problem by sorting all jobs in
the order of their finishing time. Show that if we sort the jobs in the order of the starting
times, the greedy algorithm may not return the optimum. In other words, construct a set of
jobs with their starting times and finishing times such that if we sort the jobs based on their
starting times the greedy algorithm schedules a smaller number of jobs than the optimum.

P2) Given a sequence d1, . . . , dn of integers design a polynomial time algorithm that construct a
tree such that the degree of vertex i is di. If no such tree exists your algorithm must output
“Impossible”.

Hint: Show that for every sequence d1, . . . , dn there exists a tree with this degree sequence if
and only if

∑
i di = 2(n − 1) and for all i, we have di ≥ 1. Also, you may have to argue that

if the sum of n integers is less than 2n then one of them is at most 1.

P3) In this problem we want to use DFS to solve the following problem: Given a tree T with
n vertices and a set of pairs (u1, v1), . . . , (uk, vk) we want to design an O(n + k log n) time
algorithm to find the length of the unique path from ui to vi in T for all i.

a) Show how to modify the code for recursive depth-first search of undirected graphs to assign
to each node v a number, dfsnum[v], indicating the sequence number for when it was first
discovered by depth-first search. This is exactly the number that we printed next to each
discovered vertex in DFS-Tree slides.

b) To obtain the length of the path from ui to vi first we find the lowest common ancestor
of ui and vi in T and then we add up the distance of ui and vi to the lowest common
ancestor. In this part we construct a data structure that helps us find the lowest common
ancestor. Construct a sorted array st[.] that at anytime (when running the DFS) contains
the dfsnum[v] for every node v which is discovered but not yet fully explored. In other
words, st[] contains all nodes in the stack where their DFS call is still running. Modify the
code of DFS to construct this array.

c) Fix a pair ui, vi and suppose we first discover ui and then vi. Show that the lowest common
ancestor of ui, vi is the largest j such that st[j] ≤ dfsnum[ui] at the time that we call dfs(vi).

d) Fix a pair ui, vi and suppose we first discover ui and then vi. Observe that when we call
dfs(vi) we know dfsnum[ui]. Use part (c) to design an algorithm that returns the dfsnum
of the lowest common ancestor of ui, vi.

4-1

https://courses.cs.washington.edu/courses/cse421/18wi/grading.html


e) Design an O(n+ k log n) time algorithm to find the distance of all ui, vi in the tree T . You
would also receive full credit in this part if your algorithm runs in O((n + k) log n).

P4) You are given a graph G with n vertices and m edges, and a minimum spanning tree T of the
graph. Suppose one of the edge weights w(e) of the graph is updated. Give an algorithm that
runs in time O(n+m) to test if T still remains the minimum spanning tree of the graph. Your
algorithm should output “yes” if T is still the MST and “no” otherwise. You may assume that
all edge weights are distinct both before and after the update.

P5) Extra Credit: One of the first things you learn in calculus is how to minimize a differentiable
function like y = ax2 + bx + c, where a > 0. The minimum spanning tree problem, on the
other hand, is a minimization problem of a very different flavor: there are now just a finite
number of possibilities for how the minimum might be achieved – rather than a continuum
of possibilities – and we are interested in how to perform the computation without having to
exhaust this (huge) finite number of possibilities.

One can ask what happens when these two minimization issues are brought together, and the
following question is an example of this. Suppose we have a connected graph G = (V,E).
Each edge e now has a time-varying edge cost given by a function fe : R→ R. Thus, at time
t, it has cost fe(t). We’ll assume that all these functions are positive over their entire range.
Observe that the set of edges constituting the minimum spanning tree of G may change over
time. Also, of course, the cost of the minimum spanning tree of G becomes a function of the
time t; we’ll denote this function cG(t). A natural problem then becomes: find a value of t at
which cG(t) is minimized.

Suppose each function fe is a polynomial of degree 2: fe(t) = aet
2 + bet + ce, where ae > 0.

Give an algorithm that takes the graph G and the values {(ae, be, ce) : e ∈ E}, and returns a
value of the time t at which the minimum spanning tree has minimum cost. Your algorithm
should run in time polynomial in the number of nodes and edges of the graph G. You may
assume that arithmetic operations on the numbers {(ae, be, ce)} can be done in constant time
per operation.

4-2


