Please see https://courses.cs.washington.edu/courses/cse421/18wi/grading.html for general guidelines about Homework problems.

Most of the problems only require one or two key ideas for their solution. It will help you a lot to spell out these main ideas so that you can get most of the credit for a problem even if you err on the finer details. Please justify all answers.

P1) We say that the distance between two nodes u, v in a graph $G = (V, E)$ is the minimum number of edges in a path joining them; we'll denote this by $\text{dist}(u, v)$. We say that the diameter of G is the maximum distance between any pair of nodes. Design an algorithm that runs in time $O(n(n + m))$ and finds the diameter of G, i.e., it outputs two vertices u, v that has the maximum distance.

P2) Given an undirected graph $G = (V, E)$, design an $O(m + n)$ time algorithm to detect whether G has a cycle. If G has a cycle, your algorithm should output the cycle.

P3) Given a connected undirected graph $G = (V, E)$, design an $O(m + n)$-time algorithm to find a vertex in G whose removal does not disconnect G. Note that as a consequence this algorithm shows that every connected graph contains such a vertex.

P4) Given a graph $G = (V, E)$ such that the degree of every vertex of G is at most k. Show that we can color the vertices of G with $k + 1$ colors such that the endpoints of every edge of G have distinct colors. For example, if $k = 1$ then the graph is always bipartite.

P5) **Extra Credit:** Prove that we can color the edges of every graph G with two colors (red and blue) such that, for every vertex v, the number of red edges touching v and the number of blue edges touch v differ by at most 2.