CSE 421

Greedy Algorithms / Dijkstra’s Algorithm

Yin Tat Lee
Single Source Shortest Path

Given an (un)directed graph $G = (V, E)$ with non-negative edge weights $c_e \geq 0$ and a start vertex s.

Find length of shortest paths from s to each vertex in G.
Dijkstra(G,c,s) {
 Initialize set of explored nodes $S \leftarrow \{s\}$

 // Maintain distance from s to each vertices in S
 $d[s] \leftarrow 0$

 while ($S \neq V$) {
 Pick an edge (u,v) such that $u \in S$ and $v \notin S$ and
 \[d[u] + c(u,v)\] is as small as possible.

 Add v to S and define $d[v] = d[u] + c(u,v)$.
 $Parent(v) \leftarrow u$.
 }
}
Dijkstra’s Algorithm: Example

[Diagram of a graph showing Dijkstra's algorithm example]
Dijkstra’s Algorithm: Example
Dijkstra’s Algorithm outputs a tree.
Disjkstra’s Algorithm: Correctness

Theorem: For any \(u \in S \), the path \(P_u \) on the tree in the shortest path from \(s \) to \(u \) on \(G \). (For all \(u \in S \), \(d(u) = \text{dist}(s,u) \).)

Proof: Induction on \(|S| = k \).

Base Case: This is always true when \(S = \{s\} \).

Inductive Step: Say \(v \) is the \((k+1)^{st}\) vertex that we add to \(S \). Let \((u,v)\) be last edge on \(P_v \).

If \(P_v \) is not the shortest path, there is a shorter path \(P \) to \(S \).

Consider the first time that \(P \) leaves \(S \) with edge \((x,y)\).

So, \(c(P) \geq d(x) + c_{x,y} \geq d(u) + c_{u,v} = d(v) = c(P_v) \).

A contradiction.

Due to the choice of \(v \)
Remarks on Dijkstra’s Algorithm

• Algorithm works on directed graph (with nonnegative weights)
• Algorithm produces a tree of shortest paths to s following Parent links (for undirected graph)
• The algorithm fails with negative edge weights.
 • e.g., some airline tickets
• Why does it fail?

Dijkstra’s algorithm is similar to BFS:
 • Substitute every edge with $c_e = k$ with a path of length k, then run BFS.
Implementing Dijkstra’s Algorithm

Priority Queue: Elements each with an associated key

- **Operations**
 - **Insert**
 - **Find-min**
 - Return the element with the smallest key
 - **Delete-min**
 - Return the element with the smallest key and delete it from the data structure
 - **Decrease-key**
 - Decrease the key value of some element

Implementations

Arrays:
- \(O(n)\) time find/delete-min,
- \(O(1)\) time insert/decrease key

Binary Heaps:
- \(O(\log n)\) time insert/decrease-key/delete-min,
- \(O(1)\) time find-min

Fibonacci heap:
- \(O(1)\) time insert/decrease-key
- \(O(\log n)\) delete-min
- \(O(1)\) time find-min

Read wiki!
Dijkstra(G,c,s) {
 Initialize set of explored nodes S ← {s}

 // Maintain distance from s to each vertices in S
 d[s] ← 0

 Insert all neighbors v of s into a priority queue with value c(s,v).

 while (S ≠ V) {
 // Pick an edge (u,v) such that u ∈ S and v ∉ S and
 // d[u] + c(u,v) is as small as possible.
 u ← delete min element from Q

 Add v to S and define d[v] = d[u] + c(u,v).
 Parent(v) ← u.

 foreach (edge e = (v,w) incident to v)
 if (w ∉ S)
 if (w is not in the Q)
 Insert w into Q with value d[v] + c(v,w)
 else (the key of w > d[v] + c(v,w))
 Decrease key of v to d[v] + c(v,w).
 }

 $O(n)$ of insert, each in $O(1)$
 $O(n)$ of delete min, each in $O(\log n)$
 $O(m)$ of decrease/insert key, each runs in $O(1)$

How does Bing Maps work?

Continent-sized road networks have 10s of millions intersections. Dijkstra’s algorithm: few seconds.

How do you go from UW to Microsoft?

For a region, there is a small set of nodes such that all sufficiently long shortest paths out of the region pass a node in the set.

This slide modified slides from A.V. Goldberg (a former MSR researcher)
Transit Node (TN) Algorithm

Basic concepts
• divide a map into regions (a few thousand)
• for each region, optimal paths to far away places pass through one of a small number of access nodes (≈ 10 on the average)
• the union of access nodes is the set of transit nodes ($\approx 10\,000$)

Empirical observation: small number of access/transit nodes

Preprocessing algorithm
• find access nodes for every region
• connect each vertex to its access nodes
• compute all pairs of shortest paths between transit nodes
Transit Node (TN) Algorithm

The algorithm:
If the query \((s, t)\) is far away, the shortest path is of the form
\[s \rightarrow \text{access}(s) \rightarrow \text{access}(t) \rightarrow t \]
We can create a table look-up for \((\text{access}(s), \text{access}(t))\) pairs.

If the query \((s, t)\) is close, you can do say use Dijkstra.

The precise algorithm is much more complicated.
It can find \(s \rightarrow t\) shortest path in \(< 300\) ns instead of \(> 1\) sec!