CSE 421

Depth First Search

Yin Tat Lee

Summary of last lecture

BFS(s) implemented using queue.

Edges into then-undiscovered vertices define a tree —
the “Breadth First spanning tree” of ¢

Level i in the tree are exactly all vertices v s.t., the
shortest path (in ¢) from the root s to v Is of length i

All nontree edges join vertices on the same or adjacent
levels of the tree

Applications:
« Shortest Path
« Connected component
« Test bipartiteness / 2-coloring

Preview of this lecture

* Depth First Search

« 1 property: non-tree edge Is vertical
Instead of horizontal

1 application: topological sort

Depth First Search

Follow the first path you find
as far as you can go; back up
to last unexplored edge when
you reach a dead end,

then go as far you can

Naturally implemented using recursive calls or a stack

DFS(s) — Recursive version

Initialization: mark all vertices undiscovered

DFS(v)
Mark v discovered

for each edge {v, x}
If (x is undiscovered)
Mark x discovered
DFS(x)

Mark v fully-discovered

Non-Tree Edges in DFS

BFS tree # DFS tree, but, as with BFS, DFS has found a
tree in the graph s.t. non-tree edges are "simple" in some

way.

All non-tree edges join a vertex and one of its
descendents/ancestors in the DFS tree

Color code:

DFS(A) undiscovered

discovered
@ fully-explored
Suppose edge lists R .
at each vertex Ca:édStaclk _
are sorted a (Edge list):
alphabeticall
P y R Y A (B.J)

....... @ O @ -

{1}

Color code:
undiscovered
discovered
fully-explored

Call Stack:

@ (Edge list)
Al A (B.J)

B (A,C,J)

*]
*]
*
>
*
>
*
*
*
*
&
*
*
*
*
>
.0
]] n
& n » u
@ @ @ @

* *

* *

* *

{1,2}

Color code:
undiscovered
discovered
fully-explored

Call Stack:

@ (Edge list)
Ik A (BJ)

B (X.Z.9)

C (B,D,G,H)

*
*]
* u
*
>
*
>
*
*
*
*
&
*
*
*
*
>
.0
]] n
& n » u
@ @ @ @
* *
* *
* *

{1,2,3}

Color code:
undiscovered
discovered
fully-explored

Call Stack:

@ (Edge list)
A A (BJ)

B (X.Z.J)
C(BP,G,H)
D (C,E,F)

O S ONORNON--=

{1,2,3,4}

10

Color code:
undiscovered

discovered
fully-explored
. Call Stack:
@ (Edge list)
.:: : "‘.‘ A (BJ)
& E " B (%gﬂ-])

C(BP.GH)
D (Z.E.F)

@@. @ @ E (D’F)

O ONORNON--=

{1,2,3,4,5}

11

Color code:
undiscovered

discovered
fully-explored
. Call Stack:
@ (Edge list)
ST A (B.J)
& E " B(%gﬂ-])

C(BP.GH)
D (Z.E.F)

E (B 7)
F (D,E,G)

O ONONNON--
{1,2,3,4,5,
6}

12

Color code:
undiscovered

discovered
fully-explored
. Call Stack:
@ (Edge list)
ST A (B.J)
& E " B(%gﬂ-])

C(BP.GH)
D (Z.E.F)

: Py . | b
) F(DE.8)
; ; G(C,F)

O ONORNON=:

{112a314a51
6,7}

13

Color code:
undiscovered

discovered
fully-explored
. Call Stack:
@ (Edge list)
.:: : "‘.‘ A (BJ)
< E " B (%gﬂ-])

C(BP.GH)
D (Z.E.F)

N O\ EeH
© ORI
. < @

O ONORNON=:

{112a314a51
6,7}

14

Color code:
undiscovered

discovered
fully-explored
. Call Stack:
@ (Edge list)
ST A (B.J)
& E " B(%gﬂ-])

C(BP.GH)
D (Z.E.F)

7N)\ E (B.F)
- FBES)

SR ONORNONE:

{112a314a51
6}

15

Color code:
undiscovered

discovered
fully-explored
. Call Stack:
@ (Edge list)
.:: : "‘.‘ A (BJ)
& E " B (%gﬂ-])

C(BP.GH)
D (Z.E.F)

L4 *
L4 [] *
L4 ™ “
L4 n .
N . .
S [] “
Iy []
L4 [.
L4
O.)
LN |
. []

SR ONORNONE:

{1,2,3,4,5}

16

Color code:
undiscovered
discovered
fully-explored

Call Stack:

@ (Edge list)
3) A (BJ)

B (X.Z.)
C(BP,G,H)
D (Z.EF)

ORONONNON:

{1,2,3,4}

17

Color code:
undiscovered

discovered
fully-explored
. Call Stack:
@ (Edge list)
Ik A (B.J)
B (#.£.J)
C(BP.GH)

ORONONNON:

{1,2,3}

18

Color code:
undiscovered

discovered
fully-explored
. Call Stack:
@ (Edge list)
.:: : "‘.‘ A (BJ)
< é ‘\“ B (% ¢ 1‘J)
E “" C (%W!giw)
: H(C,1,J)
@ st[] =
{1,2,3,8}

19

Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
ST A (B.J)
B (X.£.J)
3 é “"‘ C (B/’z 1¢ 1”)
: " H (Z)J)
OO
@ st] =
{1,2,3,8,9}

20

Color code:
undiscovered

discovered
fully-explored
) Call Stack:
@ (Edge list)
ST A (B.J)
< g ““‘ B (%g "])
E “" C(B,’z,g,m
:5 : H(EZXJ)
OR=
{1,2,3,8}

21

S
IS
e
.

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

A(B'J)

B (X2,J)
C(B.B.Z.H)
H (Z /)

J (A,B,H,K,L)

stf] =
{1,2,3,8,
10}

22

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

A(155’J)

B (X2.J)
C(B.P.8.H)
H(Z V)

J (HBHKL)

K (J,L)

stf] =
11,2,3,8,10
11}

23

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

A(B’J)

B (X2.J)
C(B.P.8.H)
H(Z V)

J (HBHXKL)
K (WY

L (J,K,M)

st] =
{1,2,3,8,10
11,12}

24

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

A (B)J)

B (X2,J)
C(B.B.Z.H)
H (2 J2)

J (MBHKL)
K (WY
L (VM)

M(L)

st] =
{1,2,3,8,10
,11,12,13}

25

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

A (B)J)

B (X2,J)
C(B.B.Z.H)
H (2 J2)

J (MBHKL)
K (WY
L (VM)

st] =
{1,2,3,8,10
11,12}

26

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

A(B’J)

B (X2.J)
C(B.P.8.H)
H(Z V)

J (HBHXKL)
K (WY

stf] =
11,2,3,8,10
11}

27

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

A(B’J)

B (X2.J)
C(B.P.8.H)
H(Z V)

J (HBHKL)

stf] =
{1,2,3,8,
10}

28

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

A (B.J)

B (XL
C(BB.8.H)
H(ZY3)

3 WBHKY

stf] =
{1,2,3,8,
10}

29

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

A(B'J)

B (X2,J)
C(B.B.Z.H)
H(Z J2)

st] =
{1,2,3,8}

30

DFS(A)

0..
L 4

Color code:
undiscovered

discovered

fully-explored

2
4

3
.
L J

3

.

L J
2
2
L J

Call Stack:
(Edge list)

A(BJ)
B (X.Z.J)
C(BB.Z.H)

st] =
{1,2,3}

31

DFS(A)

0..
L 4

Color code:
undiscovered

discovered

fully-explored

2
4

3
.
L J

3

.

L J
2
2
L J

Call Stack:
(Edge list)

A(BJ)
B (X.2.J)

st] =
{1,2}

32

DFS(A)

0..
L 4

Color code:
undiscovered

discovered

fully-explored

2
4

3
.
L J

3

.

L J
2
2
L J

Call Stack:
(Edge list)

A(BJ)
B (X27)

st] =
{1,2}

33

Color code:

D FS(A) undiscovered

discovered
@ fully-explored

‘e, Call Stack:

@ (Edge list)

2
4
L J
L 2

n A (B))

@ .
.

L 2
| *

st] =

11}

Color code:

D FS(A) undiscovered

discovered
@ fully-explored

Call Stack:

@ @ (Edge list)
A (B2)

2
4

L J
L 2

! L J
2

2
. L J

st[] =

11}

@ 35

Color code:

D FS(A) undiscovered

discovered
@ fully-explored

R Call Stack:

@ (Edge list)

4
L J
L 2

%, TA-DA!

@ *

.

L 2

| *
@ o @ @ @

st]] = {}

Edge code:
Tree edge
Back edge

37

Tree edge

Back edge =sssss

No Cross Edges!
SR

Edge code:

.
00
*
*
*
00 @
@0 m
@ IllIlllllllllllllllllllllllll@

DFS(A)

Properties of (undirected) DFS

Like BFS(s):
 DFS(s) visits x iff there is a path in G from s to x

So, we can use DFS to find connected components

Edges into then-undiscovered vertices define a tree —
the "depth first spanning tree" of G

Unlike the BFS tree:

The DF spanning tree isn't minimum depth
Its levels don't reflect min distance from the root

Non-tree edges never join vertices on the same or
adjacent levels

39

Non-Tree Edges in DFS

Lemma: For every edge {x, y}, if {x,y} is not in DFS tree, then
one of x or y is an ancestor of the other in the tree.

Proof:
Suppose that x is visited first.
Therefore DFS(x) was called before DFS(y)

Since {x,y} is not in DFS tree, y was visited when the edge {x, y}
was examined during DFS(x)

Therefore y was visited during the call to DFS(x) so y is a
descendant of x.

40

DAGs and Topological Ordering

Precedence Constraints

In a directed graph, an edge (i,j) means task i must occur
before task j.

Applications
« Course prerequisite:
course i must be taken before]
« Compilation:
must compile module i before j
« Computing overflow:
output of job i is part of input to job j
« Manufacturing or assembly:
sand it before paint it

42

Directed Acyclic Graphs (DAG)

Def: A DAG is a directed acyclic graph, I.e.,
one that contains no directed cycles.

Def:. A topological order of a directed graph G = (V, E) is an
ordering of its nodes as v, v,, ..., 1, SO that for every edge
(vi,vj) we have i <]

a topological ordering of that DAG—
a DAG all edges left-to-right 43

DAGSs: A Sufficient Condition

Lemma: If G has a topological order, then G is a DAG.

Proof. (by contradiction)

Suppose that ¢ has a topological order 1,2, ...,n and that ¢ also
has a directed cycle C.

Let i be the lowest-indexed node in C, and let j be the node just
before i; thus (j,i) is an (directed) edge.
By our choice of i, we have i < j.

On the other hand, since (j,i) isanedge and 1, ...,nis a
topological order, we must have j < i, a contradiction

the directed cycle C

@O%—*CBOC:’)OJPO@

the supposed topological order: 1,2,...,n

44

DAGSs: A Sufficient Condition

G has a
topological order

G is a DAG

45

Every DAG has a source node

Lemma: If G is a DAG, then G has a node with no incoming edges (i.e., a
source).

| The proof is similar to “tree has n — 1 edges”. |

Proof. (by contradiction)
Suppose that ¢ is a DAG and it has no source

Pick any node v, and begin following edges backward from v. Since v
has at least one incoming edge (u, v) we can walk backward to wu.

Then, since u has at least one incoming edge (x, u), we can walk
backward to x.

Repeat until we visit a node, say w, twice.

Let C be the sequence of nodes encountered between successive visits
tow. Cis acycle.

46

DAG => Topological Order

Lemma: If G is a DAG, then G has a topological order

Proof. (by induction on n)

Base case: trueifn = 1.

Hypothesis: Every DAG with n — 1 vertices has a topological ordering.
Inductive Step: Given DAG withn > 1 nodes, find a source node v.
G — {v}isaDAG, since deleting v cannot create cycles.

Reminder: Always remove
vertices/edges to use IH

By hypothesis, G — { v} has a topological ordering.
Place v first in topological ordering; then append nodes of ¢ — {v}
In topological order. This is valid since v has no incoming edges.

47

A Characterization of DAGSs

G has a
topological order

)
—

G is a DAG

48

Topological Order Algorithm 1: Example

49

Topological Order Algorithm 1: Example

Topological order: 1, 2, 3,4,5,6, 7

50

