CSE 421

Depth First Search

Yin Tat Lee
Summary of last lecture

- **BFS**(s) implemented using queue.

- Edges into then-undiscovered vertices define a tree – the “Breadth First spanning tree” of G

- Level i in the tree are exactly all vertices v s.t., the shortest path (in G) from the root s to v is of length i

- All nontree edges join vertices on the same or adjacent levels of the tree

- Applications:
 - Shortest Path
 - Connected component
 - Test bipartiteness / 2-coloring
Preview of this lecture

• Depth First Search
• 1 property: non-tree edge is vertical instead of horizontal
• 1 application: topological sort
Follow the first path you find as far as you can go; back up to last unexplored edge when you reach a dead end, then go as far you can.

Naturally implemented using recursive calls or a stack.
DFS(s) – Recursive version

Initialization: mark all vertices undiscovered

DFS(\(v\))
- Mark \(v\) discovered

for each edge \(\{v, x\}\)
 - if (\(x\) is undiscovered)
 - Mark \(x\) discovered
 - DFS(\(x\))

Mark \(v\) fully-discovered
Non-Tree Edges in DFS

BFS tree ≠ DFS tree, but, as with BFS, DFS has found a tree in the graph s.t. non-tree edges are "simple" in some way.

All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree.
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack (Edge list):
A (B,J)

st[] = {1}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)

st[] = \{1,2\}
DFS(A)

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)

st[] =
{1,2,3}

Color code:
undiscovered
discovered
fully-explored
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
- A (B,J)
- B (A,C,J)
- C (B,D,G,H)
- D (C,E,F)

st[] = {1,2,3,4}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)
 - D (C,E,F)
 - E (D,F)

st[] = {1, 2, 3, 4, 5}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- A (B,J)
- B (A,C,J)
- C (B,D,G,H)
- D (C,E,F)
- E (D,F)
- F (D,E,G)

st[] = {1, 2, 3, 4, 5, 6}
DFS(A)

Call Stack:
(Edge list)

A (B, J)
B (A, C, J)
C (B, D, G, H)
D (C, E, F)
E (D, F)
F (D, E, G)
G (C, F)

st[] =
{1, 2, 3, 4, 5, 6, 7}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
- A (B,J)
- B (A,C,J)
- C (B,D,G,H)
- D (E,F)
- E (D,F)
- F (D,E,G)
- G (C,F)

st[] = {1, 2, 3, 4, 5, 6, 7}
DFS(A)

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F,G)
F (D,E,G)

st[] =
{1,2,3,4,5,6}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)
 - D (C,E,F)
 - E (D,F)

\(st[] = \{1,2,3,4,5\} \)
DFS(A)

Call Stack:
(Edge list)
A (B, J)
B (A, C, J)
C (B, D, G, H)
D (C, E, F)

\[\text{st[]} = \{1, 2, 3, 4\}\]
DFS(A)

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,G,J)
C (B,D,G,H)

st[] =
{1,2,3}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
- A (B,J)
- B (A,C,J)
- C (B,D,G,H)
- H (C,I,J)

st[] = {1,2,3,8}
DFS(A)

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
I (H)

st[] = {1,2,3,8,9}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
- A (B,J)
- B (A,C,J)
- C (B,D,G,H)
- H (C,I,J)

st[] = {1,2,3,8}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B, J)
 - B (A, C, J)
 - C (B, D, G, H)
 - H (C, I, J)
 - J (A, B, H, K, L)

st[] = {1, 2, 3, 8, 10}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
- A (B, J)
- B (A, C, J)
- C (B, D, G, H)
- H (C, I, J)
- J (A, B, H, K, L)
- K (J, L)

st[] = {1, 2, 3, 8, 10, 11}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)

st[] = {1, 2, 3, 8, 10, 11, 12}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
- A (B,J)
- B (A,C,J)
- C (B,D,G,H)
- H (C,I,J)
- J (A,B,H,K,L)
- K (J,L)
- L (J,K,M)
- M (L)

\[st[] = \{1,2,3,8,10,11,12,13\} \]
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)
 - H (C,I,J)
 - J (A,B,H,K,L)
 - K (J,L)
 - L (J,K,M)

st[] = {1,2,3,8,10,11,12}
DFS(A)

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)

st[] =
{1,2,3,8,10,11}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B, J)
 - B (A, C, J)
 - C (B, D, G, H)
 - H (C, I, J)
 - J (A, B, H, K, L)

\[st[] = \{1, 2, 3, 8, 10\} \]
DFS(A)

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)

st[] =
{1,2,3,8,10}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)

st[] = {1,2,3,8}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
- A (B, J)
- B (A, C, J)
- C (B, D, G, H)

\[st[] = \{1, 2, 3\} \]
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
- A (B,J)
- B (A,C,J)

st[] = {1,2}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
- A (B,J)
- B (A,C,J)

st[] = {1,2}
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)

A (B, J)

st[] = {1}
DFS(A)

- **Color code:**
 - undiscovered
 - discovered
 - fully-explored

Call Stack:
- (Edge list)

<table>
<thead>
<tr>
<th>Node</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>discovered</td>
</tr>
<tr>
<td>B</td>
<td>undiscovered</td>
</tr>
<tr>
<td>C</td>
<td>undiscovered</td>
</tr>
<tr>
<td>D</td>
<td>undiscovered</td>
</tr>
<tr>
<td>E</td>
<td>undiscovered</td>
</tr>
<tr>
<td>F</td>
<td>undiscovered</td>
</tr>
<tr>
<td>G</td>
<td>undiscovered</td>
</tr>
<tr>
<td>H</td>
<td>undiscovered</td>
</tr>
<tr>
<td>I</td>
<td>undiscovered</td>
</tr>
<tr>
<td>J</td>
<td>undiscovered</td>
</tr>
<tr>
<td>K</td>
<td>undiscovered</td>
</tr>
<tr>
<td>L</td>
<td>undiscovered</td>
</tr>
<tr>
<td>M</td>
<td>undiscovered</td>
</tr>
</tbody>
</table>

```
st[] = {1}
```
DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
TA-DA!!

st[] = {}
DFS(A)

Edge code:
- Tree edge
- Back edge
DFS(A)

Edge code:
- Tree edge
- Back edge
- No Cross Edges!
Properties of (undirected) DFS

Like BFS(s):
• DFS(s) visits x iff there is a path in G from s to x
 So, we can use DFS to find connected components
• Edges into then-undiscovered vertices define a tree – the "depth first spanning tree" of G

Unlike the BFS tree:
• The DF spanning tree isn't minimum depth
• Its levels don't reflect min distance from the root
• Non-tree edges never join vertices on the same or adjacent levels
Non-Tree Edges in DFS

Lemma: For every edge \(\{x, y\} \), if \(\{x, y\} \) is not in DFS tree, then one of \(x \) or \(y \) is an ancestor of the other in the tree.

Proof:

Suppose that \(x \) is visited first.

Therefore \(\text{DFS}(x) \) was called before \(\text{DFS}(y) \)

Since \(\{x, y\} \) is not in DFS tree, \(y \) was visited when the edge \(\{x, y\} \) was examined during \(\text{DFS}(x) \)

Therefore \(y \) was visited during the call to \(\text{DFS}(x) \) so \(y \) is a descendant of \(x \).
DAGs and Topological Ordering
Precedence Constraints

In a directed graph, an edge \((i, j)\) means task \(i\) must occur before task \(j\).

Applications

- Course prerequisite:

 course \(i\) must be taken before \(j\)

- Compilation:

 must compile module \(i\) before \(j\)

- Computing overflow:

 output of job \(i\) is part of input to job \(j\)

- Manufacturing or assembly:

 sand it before paint it
Directed Acyclic Graphs (DAG)

Def: A DAG is a directed acyclic graph, i.e., one that contains no directed cycles.

Def: A topological order of a directed graph $G = (V, E)$ is an ordering of its nodes as v_1, v_2, \ldots, v_n so that for every edge (v_i, v_j) we have $i < j$.
Lemma: If G has a topological order, then G is a DAG.

Proof. (by contradiction)
Suppose that G has a topological order $1, 2, \ldots, n$ and that G also has a directed cycle C.
Let i be the lowest-indexed node in C, and let j be the node just before i; thus (j, i) is an (directed) edge.
By our choice of i, we have $i < j$.
On the other hand, since (j, i) is an edge and $1, 2, \ldots, n$ is a topological order, we must have $j < i$, a contradiction.

\[\text{the supposed topological order: } 1, 2, \ldots, n \]
DAGs: A Sufficient Condition

G has a topological order

?

G is a DAG
Every DAG has a source node

Lemma: If \(G \) is a DAG, then \(G \) has a node with no incoming edges (i.e., a source).

Proof. (by contradiction)
Suppose that \(G \) is a DAG and it has no source
Pick any node \(v \), and begin following edges backward from \(v \). Since \(v \) has at least one incoming edge \((u, v)\) we can walk backward to \(u \).
Then, since \(u \) has at least one incoming edge \((x, u)\), we can walk backward to \(x \).
Repeat until we visit a node, say \(w \), twice.
Let \(C \) be the sequence of nodes encountered between successive visits to \(w \). \(C \) is a cycle.

The proof is similar to “tree has \(n - 1 \) edges”.
DAG => Topological Order

Lemma: If G is a DAG, then G has a topological order

Proof. (by induction on n)

Base case: true if $n = 1$.

Hypothesis: Every DAG with $n - 1$ vertices has a topological ordering.

Inductive Step: Given DAG with $n > 1$ nodes, find a source node v.

$G - \{v\}$ is a DAG, since deleting v cannot create cycles.

By hypothesis, $G - \{v\}$ has a topological ordering.

Place v first in topological ordering; then append nodes of $G - \{v\}$

in topological order. This is valid since v has no incoming edges.

Reminder: Always remove vertices/edges to use IH
A Characterization of DAGs

G has a topological order \iff G is a DAG
Topological Order Algorithm 1: Example
Topological Order Algorithm 1: Example

Topological order: 1, 2, 3, 4, 5, 6, 7