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Summary of last lecture

BFS(s) implemented using queue.

Edges into then-undiscovered vertices define a tree —
the “Breadth First spanning tree” of ¢

Level i in the tree are exactly all vertices v s.t., the
shortest path (in ¢) from the root s to v Is of length i

All nontree edges join vertices on the same or adjacent
levels of the tree

Applications:
« Shortest Path
« Connected component
« Test bipartiteness / 2-coloring



Preview of this lecture

* Depth First Search

« 1 property: non-tree edge Is vertical
Instead of horizontal

1 application: topological sort



Depth First Search

Follow the first path you find
as far as you can go; back up
to last unexplored edge when
you reach a dead end,

then go as far you can

Naturally implemented using recursive calls or a stack



DFS(s) — Recursive version

Initialization: mark all vertices undiscovered

DFS(v)
Mark v discovered

for each edge {v, x}
If (x is undiscovered)
Mark x discovered
DFS(x)

Mark v fully-discovered



Non-Tree Edges in DFS

BFS tree # DFS tree, but, as with BFS, DFS has found a
tree in the graph s.t. non-tree edges are "simple" in some

way.

All non-tree edges join a vertex and one of its
descendents/ancestors in the DFS tree
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Properties of (undirected) DFS

Like BFS(s):
 DFS(s) visits x iff there is a path in G from s to x

So, we can use DFS to find connected components

Edges into then-undiscovered vertices define a tree —
the "depth first spanning tree" of G

Unlike the BFS tree:

The DF spanning tree isn't minimum depth
Its levels don't reflect min distance from the root

Non-tree edges never join vertices on the same or
adjacent levels
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Non-Tree Edges in DFS

Lemma: For every edge {x, y}, if {x,y} is not in DFS tree, then
one of x or y is an ancestor of the other in the tree.

Proof:
Suppose that x is visited first.
Therefore DFS(x) was called before DFS(y)

Since {x,y} is not in DFS tree, y was visited when the edge {x, y}
was examined during DFS(x)

Therefore y was visited during the call to DFS(x) so y is a
descendant of x.
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DAGs and Topological Ordering



Precedence Constraints

In a directed graph, an edge (i,j) means task i must occur
before task j.

Applications
« Course prerequisite:
course i must be taken before ]
« Compilation:
must compile module i before j
« Computing overflow:
output of job i is part of input to job j
« Manufacturing or assembly:
sand it before paint it
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Directed Acyclic Graphs (DAG)

Def: A DAG is a directed acyclic graph, I.e.,
one that contains no directed cycles.

Def:. A topological order of a directed graph G = (V, E) is an
ordering of its nodes as v, v,, ..., 1, SO that for every edge
(vi,vj) we have i < ]

a topological ordering of that DAG—
a DAG all edges left-to-right 43



DAGSs: A Sufficient Condition

Lemma: If G has a topological order, then G is a DAG.

Proof. (by contradiction)

Suppose that ¢ has a topological order 1,2, ...,n and that ¢ also
has a directed cycle C.

Let i be the lowest-indexed node in C, and let j be the node just
before i; thus (j,i) is an (directed) edge.
By our choice of i, we have i < j.

On the other hand, since (j,i) isanedge and 1, ...,nis a
topological order, we must have j < i, a contradiction

the directed cycle C

@O%—*CBOC:’)OJPO@

the supposed topological order: 1,2,...,n

44



DAGSs: A Sufficient Condition

G has a
topological order

G is a DAG
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Every DAG has a source node

Lemma: If G is a DAG, then G has a node with no incoming edges (i.e., a
source).

| The proof is similar to “tree has n — 1 edges”. |

Proof. (by contradiction)
Suppose that ¢ is a DAG and it has no source

Pick any node v, and begin following edges backward from v. Since v
has at least one incoming edge (u, v) we can walk backward to wu.

Then, since u has at least one incoming edge (x, u), we can walk
backward to x.

Repeat until we visit a node, say w, twice.

Let C be the sequence of nodes encountered between successive visits
tow. Cis acycle.
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DAG => Topological Order

Lemma: If G is a DAG, then G has a topological order

Proof. (by induction on n)

Base case: trueifn = 1.

Hypothesis: Every DAG with n — 1 vertices has a topological ordering.
Inductive Step: Given DAG withn > 1 nodes, find a source node v.
G — {v}isaDAG, since deleting v cannot create cycles.

Reminder: Always remove
vertices/edges to use IH

By hypothesis, G — { v} has a topological ordering.
Place v first in topological ordering; then append nodes of ¢ — {v}
In topological order. This is valid since v has no incoming edges.
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A Characterization of DAGSs

G has a
topological order

)
—

G is a DAG
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Topological Order Algorithm 1: Example
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Topological Order Algorithm 1: Example

Topological order: 1, 2, 3,4,5,6, 7
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