
CSE 421

Depth First Search

Yin Tat Lee

1

Summary of last lecture

• BFS(𝑠) implemented using queue.

• Edges into then-undiscovered vertices define a tree –
the “Breadth First spanning tree” of 𝐺

• Level 𝑖 in the tree are exactly all vertices 𝑣 s.t., the
shortest path (in 𝐺) from the root 𝑠 to 𝑣 is of length 𝑖

• All nontree edges join vertices on the same or adjacent
levels of the tree

• Applications:
• Shortest Path

• Connected component

• Test bipartiteness / 2-coloring 2

Preview of this lecture

• Depth First Search

• 1 property: non-tree edge is vertical

instead of horizontal

• 1 application: topological sort

3

Depth First Search

Follow the first path you find

as far as you can go; back up

to last unexplored edge when

you reach a dead end,

then go as far you can

Naturally implemented using recursive calls or a stack

4

DFS(s) – Recursive version

Initialization: mark all vertices undiscovered

DFS(𝑣)

Mark 𝑣 discovered

for each edge {𝑣, 𝑥}

if (𝑥 is undiscovered)

Mark 𝑥 discovered

DFS(𝑥)

Mark 𝑣 fully-discovered

5

Non-Tree Edges in DFS

BFS tree ≠ DFS tree, but, as with BFS, DFS has found a

tree in the graph s.t. non-tree edges are "simple" in some

way.

All non-tree edges join a vertex and one of its

descendents/ancestors in the DFS tree

6

7

DFS(A)

Suppose edge lists

at each vertex

are sorted

alphabetically

Color code:

undiscovered

discovered

fully-explored

Call Stack

(Edge list):

A (B,J)

st[] =

{1}

8

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

st[] =

{1,2}

9

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

st[] =

{1,2,3}

10

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

st[] =

{1,2,3,4}

11

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

st[] =

{1,2,3,4,5}

12

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

F (D,E,G)

st[] =

{1,2,3,4,5,

6}

13

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

F (D,E,G)

G(C,F)

st[] =

{1,2,3,4,5,

6,7}

14

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

F (D,E,G)

G(C,F)

st[] =

{1,2,3,4,5,

6,7}

15

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

F (D,E,G)

st[] =

{1,2,3,4,5,

6}

16

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

st[] =

{1,2,3,4,5}

17

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

st[] =

{1,2,3,4}

18

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

st[] =

{1,2,3}

19

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

st[] =

{1,2,3,8}

20

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

I (H)

st[] =

{1,2,3,8,9}

21

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

st[] =

{1,2,3,8}

22

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

st[] =

{1,2,3,8,

10}

23

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

K (J,L)

st[] =

{1,2,3,8,10

,11}

24

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

K (J,L)

L (J,K,M)

st[] =

{1,2,3,8,10

,11,12}

25

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

K (J,L)

L (J,K,M)

M(L)

st[] =

{1,2,3,8,10

,11,12,13}

26

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

K (J,L)

L (J,K,M)

st[] =

{1,2,3,8,10

,11,12}

27

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

K (J,L)

st[] =

{1,2,3,8,10

,11}

28

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

st[] =

{1,2,3,8,

10}

29

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

st[] =

{1,2,3,8,

10}

30

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

st[] =

{1,2,3,8}

31

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

st[] =

{1,2,3}

32

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

st[] =

{1,2}

33

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

st[] =

{1,2}

34

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

st[] =

{1}

35

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

st[] =

{1}

36

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

TA-DA!!

st[] = {}

37

DFS(A) Edge code:

Tree edge

Back edge

38

DFS(A)
Edge code:

Tree edge

Back edge

No Cross Edges!

Properties of (undirected) DFS

Like BFS(𝑠):

• DFS(𝑠) visits 𝑥 iff there is a path in G from 𝑠 to 𝑥
So, we can use DFS to find connected components

• Edges into then-undiscovered vertices define a tree –
the "depth first spanning tree" of G

Unlike the BFS tree:

• The DF spanning tree isn't minimum depth

• Its levels don't reflect min distance from the root

• Non-tree edges never join vertices on the same or
adjacent levels

39

Non-Tree Edges in DFS

Lemma: For every edge {𝑥, 𝑦}, if {𝑥, 𝑦} is not in DFS tree, then
one of 𝑥 or 𝑦 is an ancestor of the other in the tree.

Proof:

Suppose that 𝑥 is visited first.

Therefore DFS(𝑥) was called before DFS(𝑦)

Since {𝑥, 𝑦} is not in DFS tree, 𝑦 was visited when the edge {𝑥, 𝑦}
was examined during DFS(𝑥)

Therefore 𝑦 was visited during the call to DFS(𝑥) so 𝑦 is a
descendant of 𝑥.

40

DAGs and Topological Ordering

Precedence Constraints

In a directed graph, an edge (𝑖, 𝑗) means task 𝑖 must occur

before task 𝑗.

Applications

• Course prerequisite:

course 𝑖 must be taken before 𝑗

• Compilation:

must compile module 𝑖 before 𝑗

• Computing overflow:

output of job 𝑖 is part of input to job 𝑗

• Manufacturing or assembly:

sand it before paint it
42

Directed Acyclic Graphs (DAG)

Def: A DAG is a directed acyclic graph, i.e.,

one that contains no directed cycles.

Def: A topological order of a directed graph G = (V, E) is an
ordering of its nodes as 𝑣1, 𝑣2, … , 𝑣𝑛 so that for every edge
(𝑣𝑖 , 𝑣𝑗) we have 𝑖 < 𝑗.

43
a DAG

2 3

6 5 4

7 1

a topological ordering of that DAG–

all edges left-to-right

1 2 3 4 5 6 7

DAGs: A Sufficient Condition

Lemma: If 𝐺 has a topological order, then 𝐺 is a DAG.

Proof. (by contradiction)

Suppose that 𝐺 has a topological order 1,2, … , 𝑛 and that 𝐺 also

has a directed cycle 𝐶.

Let 𝑖 be the lowest-indexed node in 𝐶, and let 𝑗 be the node just

before 𝑖; thus (𝑗, 𝑖) is an (directed) edge.

By our choice of 𝑖, we have 𝑖 < 𝑗.

On the other hand, since (𝑗, 𝑖) is an edge and 1,… , 𝑛 is a

topological order, we must have 𝑗 < 𝑖, a contradiction

44

1 i j n

the directed cycle C

the supposed topological order: 1,2,…,n

DAGs: A Sufficient Condition

45

G has a

topological order
G is a DAG?

Every DAG has a source node

Lemma: If 𝐺 is a DAG, then 𝐺 has a node with no incoming edges (i.e., a

source).

Proof. (by contradiction)

Suppose that 𝐺 is a DAG and it has no source

Pick any node 𝑣, and begin following edges backward from 𝑣. Since 𝑣
has at least one incoming edge (𝑢, 𝑣) we can walk backward to 𝑢.

Then, since 𝑢 has at least one incoming edge (𝑥, 𝑢), we can walk

backward to 𝑥.

Repeat until we visit a node, say w, twice.

Let C be the sequence of nodes encountered between successive visits

to w. C is a cycle.

46

w x u v

C

w x u v

The proof is similar to “tree has 𝑛 − 1 edges”.

DAG => Topological Order

Lemma: If 𝐺 is a DAG, then 𝐺 has a topological order

Proof. (by induction on n)

Base case: true if 𝑛 = 1.

Hypothesis: Every DAG with 𝑛 − 1 vertices has a topological ordering.

Inductive Step: Given DAG with 𝑛 > 1 nodes, find a source node 𝑣.

𝐺 − { 𝑣 } is a DAG, since deleting 𝑣 cannot create cycles.

By hypothesis, 𝐺 − { 𝑣 } has a topological ordering.

Place 𝑣 first in topological ordering; then append nodes of 𝐺 − {𝑣}

in topological order. This is valid since 𝑣 has no incoming edges.

47

Reminder: Always remove

vertices/edges to use IH

A Characterization of DAGs

48

G has a

topological order
G is a DAG

49

Topological Order Algorithm 1: Example

2 3

6 5 4

7 1

50

Topological order: 1, 2, 3, 4, 5, 6, 7

Topological Order Algorithm 1: Example

2 3

6 5 4

7 1

1 2 3 4 5 6 7

