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Summary of last lecture

• BFS(𝑠) implemented using queue.

• Edges into then-undiscovered vertices define a tree –
the “Breadth First spanning tree” of 𝐺

• Level 𝑖 in the tree are exactly all vertices 𝑣 s.t., the 
shortest path (in 𝐺) from the root 𝑠 to 𝑣 is of length 𝑖

• All nontree edges join vertices on the same or adjacent 
levels of the tree

• Applications:
• Shortest Path

• Connected component 

• Test bipartiteness / 2-coloring 2



Preview of this lecture

• Depth First Search

• 1 property: non-tree edge is vertical 

instead of horizontal

• 1 application: topological sort
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Depth First Search

Follow the first path you find 

as far as you can go; back up 

to last unexplored edge when 

you reach a dead end, 

then go as far you can 

Naturally implemented using recursive calls or a stack
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DFS(s) – Recursive version

Initialization: mark all vertices undiscovered

DFS(𝑣) 

Mark 𝑣 discovered

for each edge {𝑣, 𝑥}

if (𝑥 is undiscovered)

Mark 𝑥 discovered

DFS(𝑥)

Mark 𝑣 fully-discovered
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Non-Tree Edges in DFS

BFS tree ≠ DFS tree, but, as with BFS, DFS has found a 

tree in the graph s.t. non-tree edges are "simple" in some 

way.

All non-tree edges join a vertex and one of its 

descendents/ancestors in the DFS tree
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DFS(A)

Suppose edge lists

at each vertex 

are sorted 

alphabetically

Color code:

undiscovered

discovered

fully-explored

Call Stack

(Edge list):

A (B,J)

st[] =           

{1}
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

st[] =           

{1,2}
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DFS(A)
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6,7}
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DFS(A)
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DFS(A)
Color code:
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DFS(A)
Color code:
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DFS(A)
Color code:
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DFS(A)
Color code:
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fully-explored

Call Stack:

(Edge list)

A (B,J)
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DFS(A)
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DFS(A)
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DFS(A)
Color code:
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A (B,J)
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DFS(A)
Color code:
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DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

TA-DA!!

st[] =  {}
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DFS(A) Edge code:

Tree edge

Back edge
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DFS(A)
Edge code:

Tree edge

Back edge

No Cross Edges!



Properties of (undirected) DFS

Like BFS(𝑠):

• DFS(𝑠) visits 𝑥 iff there is a path in G from 𝑠 to 𝑥
So, we can use DFS to find connected components

• Edges into then-undiscovered vertices define a tree –
the "depth first spanning tree" of G

Unlike the BFS tree: 

• The DF spanning tree isn't minimum depth

• Its levels don't reflect min distance from the root

• Non-tree edges never join vertices on the same or 
adjacent levels
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Non-Tree Edges in DFS

Lemma: For every edge {𝑥, 𝑦}, if {𝑥, 𝑦} is not in DFS tree, then 
one of 𝑥 or 𝑦 is an ancestor of the other in the tree.

Proof:

Suppose that 𝑥 is visited first.

Therefore DFS(𝑥) was called before DFS(𝑦)

Since {𝑥, 𝑦} is not in DFS tree, 𝑦 was visited when the edge {𝑥, 𝑦}
was examined during DFS(𝑥)

Therefore 𝑦 was visited during the call to DFS(𝑥) so 𝑦 is a 
descendant of 𝑥.
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DAGs and Topological Ordering



Precedence Constraints

In a directed graph, an edge (𝑖, 𝑗) means task 𝑖 must occur 

before task 𝑗.

Applications

• Course prerequisite:

course 𝑖 must be taken before 𝑗

• Compilation: 

must compile module 𝑖 before 𝑗

• Computing overflow:

output of job 𝑖 is part of input to job 𝑗

• Manufacturing or assembly: 

sand it before paint it
42



Directed Acyclic Graphs (DAG)

Def: A DAG is a directed acyclic graph, i.e., 

one that contains no directed cycles.

Def:  A topological order of a directed graph G = (V, E) is an 
ordering of its nodes as 𝑣1, 𝑣2, … , 𝑣𝑛 so that for every edge 
(𝑣𝑖 , 𝑣𝑗) we have 𝑖 < 𝑗.

43
a DAG

2 3

6 5 4

7 1

a topological ordering of that DAG–

all edges left-to-right

1 2 3 4 5 6 7



DAGs: A Sufficient Condition

Lemma: If 𝐺 has a topological order, then 𝐺 is a DAG.

Proof.  (by contradiction)

Suppose that 𝐺 has a topological order 1,2, … , 𝑛 and that 𝐺 also 

has a directed cycle 𝐶.

Let 𝑖 be the lowest-indexed node in 𝐶, and let 𝑗 be the node just 

before 𝑖; thus (𝑗, 𝑖) is an (directed) edge.

By our choice of 𝑖, we have 𝑖 < 𝑗.

On the other hand, since (𝑗, 𝑖) is an edge and 1,… , 𝑛 is a 

topological order, we must have 𝑗 < 𝑖, a contradiction
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1 i j n

the directed cycle C

the supposed topological order:  1,2,…,n



DAGs: A Sufficient Condition
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G has a 

topological order
G is a DAG?



Every DAG has a source node

Lemma: If 𝐺 is a DAG, then 𝐺 has a node with no incoming edges (i.e., a 

source).

Proof.  (by contradiction)

Suppose that 𝐺 is a DAG and it has no source

Pick any node 𝑣, and begin following edges backward from 𝑣.  Since 𝑣
has at least one incoming edge (𝑢, 𝑣) we can walk backward to 𝑢.

Then, since 𝑢 has at least one incoming edge (𝑥, 𝑢), we can walk 

backward to 𝑥.

Repeat until we visit a node, say w, twice.

Let C be the sequence of nodes encountered between successive visits 

to w.  C is a cycle.
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w x u v

C

w x u v

The proof is similar to “tree has 𝑛 − 1 edges”.



DAG => Topological Order

Lemma: If 𝐺 is a DAG, then 𝐺 has a topological order

Proof.  (by induction on n)

Base case:  true if 𝑛 = 1.

Hypothesis: Every DAG with 𝑛 − 1 vertices has a topological ordering.

Inductive Step: Given DAG with 𝑛 > 1 nodes, find a source node 𝑣.

𝐺 − { 𝑣 } is a DAG, since deleting 𝑣 cannot create cycles.

By hypothesis, 𝐺 − { 𝑣 } has a topological ordering.

Place 𝑣 first in topological ordering; then append nodes of 𝐺 − {𝑣}

in topological order. This is valid since 𝑣 has no incoming edges. 
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Reminder: Always remove 

vertices/edges to use IH



A Characterization of DAGs
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G has a 

topological order
G is a DAG
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Topological Order Algorithm 1:  Example

2 3

6 5 4

7 1
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Topological order:  1, 2, 3, 4, 5, 6, 7

Topological Order Algorithm 1:  Example

2 3

6 5 4

7 1

1 2 3 4 5 6 7


