
CSE 421

NP-Completeness / Linear Programs

Yin Tat Lee

1

Fixing some mistake.

Thm. Max cardinality matching in G = value of max flow in H.

Proof. (matching val ≥ maxflow val) Let 𝑓 be a max flow in 𝐻 of value 𝑘.

Integrality theorem  𝑘 is integral and we can assume 𝑓 is 0-1.

Consider 𝑀 = set of edges from 𝑋 to 𝑌 with 𝑓 𝑒 = 1.

• each node in 𝑋 and 𝑌 participates in at most one edge in 𝑀.

• |𝑀| = 𝑘 because the flow from 𝑠 ∪ 𝑋 to 𝑌 ∪ 𝑡 equals to the flow value 𝑘.

2

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

∞
H

1

3

5

1'

3'

5'

2

4

2'

4'

G

Decision Problems

A decision problem is a computational problem where the
answer is just yes/no.

We can define a problem by a set 𝑋.

The answer for the input 𝑠 is YES iff 𝑠 ∈ 𝑋.

Certifier: Algorithm C(x, t) is a certifier for problem A if

𝑠 ∈ 𝑋 if and only if (There is a 𝑡 such that 𝐶 𝑥, 𝑡 = 𝑌𝐸𝑆))

NP: Set of all decision problems for which there exists a poly-
time certifier.

Co-NP: 𝑋 ∈ 𝑁𝑃 if and only if 𝑋 ∈ 𝑐𝑜 − 𝑁𝑃.

3

NP Completeness

Complexity Theorists Approach: We don’t know how to prove
any problem in NP is hard. So, let’s find hardest problems in NP.

NP-hard: A problem B is NP-hard iff for any problem 𝐴 ∈ 𝑁𝑃, we
have 𝐴 ≤𝑝 𝐵

NP-Completeness: A problem B is NP-complete iff B is NP-hard
and 𝐵 ∈ 𝑁𝑃.

Motivations:

• If 𝑃 ≠ 𝑁𝑃, then every NP-Complete problems is not in P. So,
we shouldn’t try to design Polytime algorithms

• To show 𝑃 = 𝑁𝑃, it is enough to design a polynomial time
algorithm for just one NP-complete problem.

4

Cook-Levin Theorem

Theorem (Cook 71, Levin 73): 3-SAT is NP-complete, i.e., for all
problems 𝐴 ∈ 𝑁𝑃, 𝐴 ≤𝑝 3-SAT.

(See CSE 431 for the proof)

• So, 3-SAT is the hardest problem in NP.

What does this say about other problems of interest? Like
Independent set, Vertex Cover, …

Fact: If 𝐴 ≤𝑝 𝐵 and 𝐵 ≤𝑝 𝐶 then, 𝐴 ≤𝑝 𝐶
Pf idea: Just compose the reductions from A to B and B to C

So, if we prove 3-SAT ≤𝑝 Independent set, then Independent
Set, Clique, Vertex cover, Set cover are all NP-complete

3-SAT ≤𝑝 Independent Set ≤𝑝 Vertex Cover ≤𝑝 Set Cover

5

3-SAT ≤𝑝 Independent Set

Map a 3-CNF to (G,k). Say k is number of clauses

• Create a vertex for each literal

• Joint two literals if

• They belong to the same clause (blue edges)

• The literals are negations, e.g., 𝑥𝑖 , ഥ𝑥𝑖 (red edges)

• Set k be the # of clauses.

𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3

6

𝑥1

𝑥3

𝑥4

𝑥2

𝑥3

𝑥4

𝑥2

𝑥1

𝑥3

Polynomial-Time Reduction

Correctness of 3-SAT ≤𝑝 Indep Set

F satisfiable => An independent of size k

Given a satisfying assignment, Choose one node from each clause
where the literal is satisfied

𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3

Satisfying assignment: 𝑥1 = 𝑇, 𝑥2 = 𝐹, 𝑥3 = 𝑇, 𝑥4 = 𝐹

• S has exactly one node per clause => No blue edges between S

• S follows a truth-assignment => No red edges between S

• S has one node per clause => |S|=k 7

𝑥1

𝑥3

𝑥4

𝑥2

𝑥3

𝑥4

𝑥2

𝑥1

𝑥3

Correctness of 3-SAT ≤𝑝 Indep Set

An independent set of size k => A satisfying assignment

Given an independent set S of size k.

S has exactly one vertex per clause (because of blue edges)

S does not have 𝑥𝑖 , ഥ𝑥𝑖 (because of red edges)

So, S gives a satisfying assignment

Satisfying assignment: 𝑥1 = 𝐹, 𝑥2 =? , 𝑥3 = 𝑇, 𝑥4 = 𝑇
𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3

8

𝑥1

𝑥3

𝑥4

𝑥2

𝑥3

𝑥4

𝑥2

𝑥1

𝑥3

Summary
• If a problem is NP-hard it does not mean that all instances are

hared, e.g., Vertex-cover has a polynomial-time algorithm in
trees

• We learned the crucial idea of polynomial-time reduction. This
can be even used in algorithm design, e.g., we know how to
solve max-flow so we reduce image segmentation to max-flow

• NP-Complete problems are the hardest problem in NP

• NP-hard problems may not necessarily belong to NP.

• Polynomial-time reductions are transitive relations

9

Linear Programming

Linear System of Equations

In high school we learn Gaussian elimination algorithm to solve a
system of linear equations

𝑥1 + 𝑥3 = 7
2𝑥2 + 𝑥1 = 5

3𝑥1 + 7𝑥2 − 𝑥3 = 1

We set 𝑥3 = 7 − 𝑥1 and we substitute in the following
equations.

Then we substitute 𝑥2 =
5−𝑥1

2
in to the third equations.

The third equational uniquely defines 𝑥1

11

Linear Programming

Optimize a linear function subject to linear inequalities

max 3𝑥1 + 4𝑥3
𝑠. 𝑡. , 𝑥1+𝑥2 ≤ 5

𝑥3−𝑥1 = 4
𝑥3 − 𝑥2 ≥ −5
𝑥1, 𝑥2, 𝑥3 ≥ 0

• We can have inequalities,

• We can have a linear objective functions

12

Applications of Linear Programming

Generalizes: Ax=b, 2-person zero-sum games, shortest path,
max-flow, matching, multicommodity flow, MST, min weighted
arborescence, …

Why significant?

• We can solve linear programming in polynomial time.

• We can model many practical problems with a linear model
and solve it with linear programming

Linear Programming in Practice:

• There are very fast implementations: CPLEX, Gorubi, ….

• CPLEX can solve LPs with millions of variables/constraints in
seconds

13

Example 1: Diet Problem

Suppose you want to schedule a diet for yourself. There are four

category of food: veggies, meat, fruits, and dairy. Each category has its

own (p)rice, (c)alories and (h)appiness per pound:

Linear Modeling: Consider a linear model: If we eat 0.5lb of meat an

0.2lb of fruits we will be 0.5 ℎ𝑚 + 0.2 ℎ𝑓 happy

• You should eat 1500 calories to be healthy

• You can spend 20 dollars a day on food.

Goal: Maximize happiness?

14

veggies meat fruits dairy

price 𝑝𝑣 𝑝𝑚 𝑝𝑓 𝑝𝑑

calorie 𝑐𝑣 𝑐𝑚 𝑐𝑓 𝑐𝑑

happiness ℎ𝑣 ℎ𝑚 ℎ𝑓 ℎ𝑑

Diet Problem by LP

• You should eat 1500 calaroies to be healthy

• You can spend 20 dollars a day on food.

Goal: Maximize happiness?

15

veggies meat fruits dairy

price 𝑝𝑣 𝑝𝑚 𝑝𝑓 𝑝𝑑

calorie 𝑐𝑣 𝑐𝑚 𝑐𝑓 𝑐𝑑

happiness ℎ𝑣 ℎ𝑚 ℎ𝑓 ℎ𝑑

max 𝑥𝑣ℎ𝑣 + 𝑥𝑚ℎ𝑚 + 𝑥𝑓ℎ𝑓 + 𝑥𝑑ℎ𝑑
𝑠. 𝑡. 𝑥𝑣𝑝𝑣 + 𝑥𝑚𝑝𝑚 + 𝑥𝑓𝑝𝑓 + 𝑥𝑑𝑝𝑑 ≤ 20

𝑥𝑣𝑐𝑣 + 𝑥𝑚𝑐𝑚 + 𝑥𝑓𝑐𝑓 + 𝑥𝑑𝑐𝑑 ≤ 1500

𝑥𝑣 , 𝑥𝑚, 𝑥𝑓 , 𝑥𝑑 ≥ 0

#pounds of veggies, meat, fruits, dairy to eat per day

How to Design an LP?

• Define the set of variables

• Put constraints on your variables,

• should they be nonnegative?

• Write down the constraints

• If a constraint is not linear try to approximate it with a linear

constraint

• Write down the objective function

• If it is not linear approximation with a linear function

• Decide if it is a minimize/maximization problem

16

Example 2: Max Flow

Define the set of variables

• For every edge 𝑒 let 𝑥𝑒 be the flow on the edge 𝑒

Put constraints on your variables

• 𝑥𝑒 ≥ 0 for all edge e (The flow is nonnegative)

Write down the constraints

• 𝑥𝑒 ≤ 𝑐(𝑒) for every edge e, (Capacity constraints)

• σ𝑒 out of 𝑣 𝑥𝑒 = σ𝑒 in to 𝑣 𝑥𝑒 ∀𝑣 ≠ 𝑠, 𝑡 (Conservation constraints)

Write down the objective function

• σ𝑒 out of 𝑠 𝑥𝑒

Decide if it is a minimize/maximization problem

• max

17

Example 2: Max Flow

18

max ෍
𝑒 out of 𝑠

𝑥𝑒

𝑠. 𝑡. ෍
𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑣

𝑥𝑒 =෍
𝑒 𝑖𝑛 𝑡𝑜 𝑣

𝑥𝑒 ∀𝑣 ≠ 𝑠, 𝑡

𝑥𝑒 ≤ 𝑐 𝑒 ∀𝑒
𝑥𝑒 ≥ 0 ∀𝑒

Example 3: Min Cost Max Flow

Suppose we can route 100 gallons of water from 𝑠 to 𝑡.
But for every pipe edge 𝑒 we have to pay 𝑝 𝑒
for each gallon of water that we send through 𝑒.

Goal: Send 100 gallons of water from 𝑠 to 𝑡 with minimum
possible cost

19

min ෍
𝑒∈E

𝑝 𝑒 ⋅ 𝑥𝑒

𝑠. 𝑡. ෍
𝑒 out of 𝑣

𝑥𝑒 =෍
𝑒 𝑖𝑛 𝑡𝑜 𝑣

𝑥𝑒 ∀𝑣 ≠ 𝑠, 𝑡

෍
𝑒 out of 𝑠

𝑥𝑒 = 100

𝑥𝑒 ≤ 𝑐 𝑒 ∀𝑒
𝑥𝑒 ≥ 0 ∀𝑒

Example 4: Metabolic Network

Let 𝑣𝑖 are the rate of different chemical reaction in your body.

It satisfies mass conversation (translate to linear inequality).

It satisfies some upper and lower bound.

Optimizing certain function in your body is corresponding to

solving a linear program!

How you find that LP? DNA!

https://vmh.uni.lu/#reconmap

Disclaimer: I suspect your biology is better than mine.

https://vmh.uni.lu/#reconmap

Summary (Linear Programming)

• Linear programming is one of the biggest advances in 20th

century

• It is being used in many areas of science: Mechanics,
Physics, Operations Research, and in CS: AI, Machine
Learning, Theory, …

• Almost all problems that we talked can be solved with LPs,
Why not use LPs?
• In some sense, current fastest algorithm for maxflow is based on LP!

• Maybe one day, I need to rewrite CSE 421.

• But still need to wait for a test of time.

• There is rich theory of LP-duality which generalizes max-flow
min-cut theorem

21

Up to now, the current asymptotically fastest algorithm is by me. Feel free to beat it.

What is next?
• CSE 431 (Complexity Course)

• How to prove lower bounds on algorithms?

• CSE 521 (Graduate Algorithms Course)

• How to design streaming algorithms?

• How to design algorithms for high dimensional data?

• How to use matrices/eigenvalues/eigenvectors to design algorithms

• How to use LPs to design algorithms?

• CSE 525 (Graduate Randomized Algorithms Course)

• How to use randomization to design algorithms?

• How to use Markov Chains to design algorithms?

• CSE ??? (Graduate Convex Optimization)

• A new course by me next winter 

22

