CSE 421

NP-Completeness

Yin Tat Lee
Computational Complexity

Goal: Classify problems according to the amount of computational resources used by the best algorithms that solve them

Here we focus on time complexity

Recall: worst-case running time of an algorithm

- **max** # steps algorithm takes on any input of size n
Relative Complexity of Problems

• Want a notion that allows us to compare the complexity of problems
• Want to be able to make statements of the form
 “If we could solve problem B in polynomial time then we can solve problem A in polynomial time”

 “Problem B is at least as hard as problem A”
Polynomial Time Reduction

Def $A \leq_p B$: if there is an algorithm for problem A using a ‘black box’ (subroutine) that solve problem B s.t.,

- Algorithm uses only a polynomial number of steps
- Makes only a polynomial number of calls to a subroutine for B

So,

- B is Polynomial time solvable
- A is Polynomial time solvable

Conversely,

- No efficient Algorithm for A
- No efficient Algorithm for B

In words, B is as hard as A (it can be even harder)
≤₁ \text{p} \text{ Reductions}

Here, we often use a restricted form of polynomial-time reduction often called Karp reduction.

\[A ≤₁ \text{p} B: \] if and only if there is an algorithm for A given a black box solving B that on input x

- Runs for polynomial time computing an input \(f(x) \) of B
- Makes one call to the black box for B for input \(f(x) \)
- Returns the answer that the black box gave

We say that the function \(f(.) \) is the reduction
Example 1: Indep Set \leq_p Clique

Indep Set: Given $G=(V,E)$ and an integer k, is there $S \subseteq V$ s.t. $|S| \geq k$ and no two vertices in S are joined by an edge?

Clique: Given a graph $G=(V,E)$ and an integer k, is there $S \subseteq V$, $|U| \geq k$ s.t., every pair of vertices in S is joined by an edge?

Claim: Indep Set \leq_p Clique

Pf: Given $G = (V, E)$ and instance of indep Set. Construct a new graph $G' = (V, E')$ where $\{u, v\} \in E'$ if and only if $\{u, v\} \notin E$.

```
Example 1:
```

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S is an indep set in G

S is an Clique in G'
Example 2: Vertex Cover \(\leq_p \) Indep Set

Vertex Cover: Given a graph \(G=(V,E) \) and an integer \(k \), is there a vertex cover of size at most \(k \)?

Claim: For any graph \(G = (V, E) \), \(S \) is an independent set iff \(V - S \) is a vertex cover.

Pf: \(\Rightarrow \)
Let \(S \) be a independent set of \(G \)
Then, \(S \) has at most one endpoint of every edge of \(G \)
So, \(V - S \) has at least one endpoint of every edge of \(G \)
So, \(V - S \) is a vertex cover.

\(\Leftarrow \)
Suppose \(V - S \) is a vertex cover
Then, there is no edge between vertices of \(S \) (otherwise, \(V - S \) is not a vertex cover)
So, \(S \) is an independent set.
Example 3: Vertex Cover \leq_p Set Cover

Set Cover: Given a set U, collection of subsets S_1, \ldots, S_m of U and an integer k, is there a collection of k sets that contain all elements of U?

Claim: Vertex Cover \leq_p Set Cover

Pf:
Given $(G = (V, E), k)$ of vertex cover we construct a set cover input $f(G, k)$

- $U = E$
- For each $v \in V$ we create a set S_v of all edges connected to v

This clearly is a polynomial-time reduction

So, we need to prove it gives the right answer
Example 3: Vertex Cover \leq_p Set Cover

Claim: Vertex Cover \leq_p Set Cover

Pf: Given $(G = (V, E), k)$ of vertex cover we construct a set cover input $f(G, k)$

- $U = E$
- For each $v \in V$ we create a set S_v of all edges connected to v

Vertex-Cover (G, k) is yes \Rightarrow Set-Cover $f(G, k)$ is yes

If a set $W \subseteq V$ covers all edges, just choose S_v for all $v \in W$, it covers all U.

Set-Cover $f(G, k)$ is yes \Rightarrow Vertex-Cover (G, k) is yes

If $(S_{v_1}, ..., S_{v_k})$ covers all U, the set $\{v_1, ..., v_k\}$ covers all edges of G.
Decision Problems

A decision problem is a computational problem where the answer is just yes/no.

Here, we study computational complexity of decision Problems.

Why?
• Simpler to deal with
• Decision version is not harder than Search version, so it gives a lower bound for Decision version
• usually, you can use decider multiple times to find an answer.
Polynomial Time

Define P (polynomial-time) to be the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.

Do we well understand P?

• We can prove that a problem is in P by exhibiting a polynomial time algorithm
• It is in most cases very hard to prove a problem is not in P.
Beyond P?

We have seen many problems that seem hard

- Independent Set
- 3-coloring
- Vertex Cover
- 3-SAT

Given a 3-CNF \((x_1 \lor \overline{x_2} \lor x_9) \land (\overline{x_2} \lor x_3 \lor x_7) \land \cdots\) is there a satisfying assignment?

Common Property: If the answer is yes, there is a “short” proof (a.k.a., certificate), that allows you to verify (in polynomial-time) that the answer is yes.

- The proof may be hard to find
Certifier: Algorithm $C(x, t)$ is a certifier for problem A if for every string x, the answer is “yes” iff there exists a string t such that $C(x, t) = yes$.

Intuition: Certifier doesn't determine whether answer is “yes” on its own; rather, it checks a proposed proof t that answer is “yes”.

NP: Set of all decision problems for which there exists a poly-time certifier.

Remark. NP stands for nondeterministic polynomial-time.
Example: 3SAT is in NP

Given a 3-CNF formula, is there a satisfying assignment?

Certificate: An assignment of truth values to the \(n \) boolean variables.

Verifier: Check that each clause has at least one true literal.

Ex: \((x_1 \lor \overline{x}_3 \lor x_4) \land (x_2 \lor \overline{x}_4 \lor x_3) \land (x_2 \lor \overline{x}_1 \lor x_3)\)

Certificate: \(x_1 = T, x_2 = F, x_3 = T, x_4 = F\)

Conclusion: 3-SAT is in NP
What do we know about NP?

- Nobody knows if all problems in NP can be done in polynomial time, i.e. does $P=NP$?
 - one of the most important open questions in all of science.
 - Huge practical implications specially if answer is yes

- Every problem in P is in NP
 - one doesn’t even need a certificate for problems in P so just ignore any hint you are given

- Every problem in NP is in exponential time

- Some problems in NP seem really hard
 - nobody knows how to prove that they are really hard to solve, i.e. $P \neq NP$
NP Completeness

Complexity Theorists Approach: We don’t know how to prove any problem in NP is hard. So, let’s find hardest problems in NP.

NP-hard: A problem B is NP-hard iff for any problem \(A \in NP \), we have \(A \leq_p B \)

NP-Completeness: A problem B is NP-complete iff B is NP-hard and \(B \in NP \).

Motivations:
• If \(P \neq NP \), then every NP-Complete problems is not in P. So, we shouldn’t try to design Polytime algorithms
• To show \(P = NP \), it is enough to design a polynomial time algorithm for just one NP-complete problem.
Cook-Levin Theorem

Theorem (Cook 71, Levin 73): 3-SAT is NP-complete, i.e., for all problems $A \in NP$, $A \leq_p 3$-SAT.
(See CSE 431 for the proof)
• So, 3-SAT is the hardest problem in NP.

What does this say about other problems of interest? Like Independent set, Vertex Cover, …

Fact: If $A \leq_p B$ and $B \leq_p C$ then, $A \leq_p C$
Pf idea: Just compose the reductions from A to B and B to C

So, if we prove 3-SAT \leq_p Independent set, then Independent Set, Clique, Vertex cover, Set cover are all NP-complete

3-SAT \leq_p Independent Set \leq_p Vertex Cover \leq_p Set Cover
3-SAT \leq_p \text{ Independent Set}

Map a 3-CNF to \((G,k)\). Say \(m\) is number of clauses

- Create a vertex for each literal
- Joint two literals if
 - They belong to the same clause (blue edges)
 - The literals are negations, e.g., \(x_i, \overline{x_i}\) (red edges)
- Set \(k\) be the # of clauses.

\[
(x_1 \lor \overline{x_3} \lor x_4) \land (x_2 \lor \overline{x_4} \lor x_3) \land (x_2 \lor \overline{x_1} \lor x_3)
\]

Polynomial-Time Reduction
Correctness of 3-SAT \leq_p Indep Set

F satisfiable \Rightarrow An independent of size k
Given a satisfying assignment, Choose one node from each clause where the literal is satisfied

$$(x_1 \lor \overline{x}_3 \lor x_4) \land (x_2 \lor \overline{x}_4 \lor x_3) \land (x_2 \lor \overline{x}_1 \lor x_3)$$

Satisfying assignment: $x_1 = T, x_2 = F, x_3 = T, x_4 = F$

- S has exactly one node per clause \Rightarrow No blue edges between S
- S follows a truth-assignment \Rightarrow No red edges between S
- S has one node per clause $\Rightarrow |S|=k$
Correctness of 3-SAT \leq_p Indep Set

An independent set of size k \implies A satisfying assignment

Given an independent set S of size k.

S has exactly one vertex per clause (because of blue edges)

S does not have x_i, \overline{x}_i (because of red edges)

So, S gives a satisfying assignment

Satisfying assignment: $x_1 = F, x_2 = ?, x_3 = T, x_4 = T$

$$(x_1 \lor \overline{x}_3 \lor x_4) \land (x_2 \lor \overline{x}_4 \lor x_3) \land (x_2 \lor \overline{x}_1 \lor x_3)$$
Summary

• If a problem is NP-hard it does not mean that all instances are hard, e.g., Vertex-cover has a polynomial-time algorithm in trees.

• We learned the crucial idea of polynomial-time reduction. This can be even used in algorithm design, e.g., we know how to solve max-flow so we reduce image segmentation to max-flow.

• NP-Complete problems are the hardest problem in NP.

• NP-hard problems may not necessarily belong to NP.

• Polynomial-time reductions are transitive relations.