CSE 421

Theory Application of Maxflow

Yin Tat Lee
Maximum Matching Problem

Given an undirected graph $G = (V, E)$. A set $M \subseteq E$ is a matching if each node appears in at most 1 edge in M. Goal: find a matching with largest cardinality.
Bipartite Matching Problem

Given an undirected bipartite graph \(G = (X \cup Y, E) \)
A set \(M \subseteq E \) is a matching if each node appears in at most 1 edge in \(M \).
Goal: find a matching with largest cardinality.

\[
\begin{array}{c}
1 & 1' \\
2 & 2' \\
3 & 3' \\
4 & 4' \\
5 & 5'
\end{array}
\]

\(X \) \hspace{1cm} \(Y \)
Create digraph H as follows:

- Orient all edges from X to Y, and assign infinite (or unit) capacity.
- Add source s, and **unit** capacity edges from s to each node in L.
- Add sink t, and **unit** capacity edges from each node in R to t.
Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in $G = \text{value of max flow in } H$.

Proof. Matching value $\leq \text{maxflow value}$

Given max matching M of cardinality k.

Consider flow f that sends 1 unit along each of k edges of M.

f is a flow, and has cardinality k. □
Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in $G = \text{value of max flow in } H$.

Proof. (matching val \geq maxflow val) Let f be a max flow in H of value k. Integrality theorem $\Rightarrow k$ is integral and we can assume f is 0-1.

Consider $M = \text{set of edges from } X \text{ to } Y \text{ with } f(e) = 1$.

- each node in X and Y participates in at most one edge in M.
- $|M| = k$: consider s-t cut $(s \cup X, t \cup Y)$
Perfect Bipartite Matching
Perfect Bipartite Matching

Def. A matching $M \subseteq E$ is perfect if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings:
• Clearly we must have $|X| = |Y|$.
• What other conditions are necessary?
• What conditions are sufficient?
Perfect Bipartite Matching: $N(S)$

Def. Let S be a subset of nodes, and let $N(S)$ be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph G has a perfect matching, then $|N(S)| \geq |S|$ for all subsets $S \subseteq X$.

Proof. Each $v \in S$ has to be matched to a unique node in $N(S)$.
Marriage Theorem

Thm: [Frobenius 1917, Hall 1935]
Let $G = (X \cup Y, E)$ be a bipartite graph with $|X| = |Y|$. Then, G has a perfect matching iff $|N(S)| \geq |S|$ for all subsets $S \subseteq X$.

Proof. \Rightarrow
This was the previous observation.
If $|N(S)| < |S|$ for some S, then there is no perfect matching.
Marriage Theorem

Pf. \(\exists S \subseteq X \) s.t., \(|N(S)| < |S| \iff G \) does not a perfect matching
Formulate as a max-flow and let \((A, B)\) be the min \(s - t\) cut
\(G\) has no perfect matching \(\Rightarrow v(f^*) < |X|\). So, \(cap(A, B) < |X|\)
Define \(X_A = X \cap A, X_B = X \cap B, Y_A = Y \cap A\)
Then, \(cap(A, B) = |X_B| + |Y_A|\)
Since min-cut does not use \(\infty\) edges, \(N(X_A) \subseteq Y_A\)
\(|N(X_A)| \leq |Y_A| = cap(A, B) - |X_B| = cap(A, B) - |X| + |X_A| < |X_A|\)
Bipartite Matching Running Time

Which max flow algorithm to use for bipartite matching?

Generic augmenting path: $O(m \text{ val}(f^*)) = O(mn)$.

Shortest augmenting path: $O(m\sqrt{n})$. [Even and Tarjan 75, Karzanov 73]

Current record: $O(m^{10/7} \log^{O(1)} n)$ [Madry 13]

😢 I tried few years on improving it 😢
Edge Disjoint Paths
Edge Disjoint Paths Problem

Given a digraph $G = (V, E)$ and two nodes s and t, find the max number of edge-disjoint $s - t$ paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.
Max Flow Formulation

Assign a unit capacitary to every edge. Find Max flow from s to t.

Thm. Max number edge-disjoint s-t paths equals max flow value.

Proof. # of disjoint path \leq maxflow value

Suppose there are k edge-disjoint paths P_1, \ldots, P_k.

Set $f(e) = 1$ if e participates in some path P_i; else set $f(e) = 0$.

Since paths are edge-disjoint, f is a flow of value k. ▪
Thm. Max number edge-disjoint s-t paths equals max flow value.
Pf. # of disjoint path \geq maxflow val
Suppose max flow value is k
Integrality theorem \Rightarrow there exists 0-1 flow f of value k.
Consider edge (s, u) with $f(s, u) = 1$.
• by conservation, there exists an edge (u, v) with $f(u, v) = 1$
• continue until reach t, always choosing a new edge
This produces k (not necessarily simple) edge-disjoint paths.

We can return to u so we can have cycles. But we can eliminate cycles if desired
Network Connectivity
Network Connectivity

Given a digraph $G = (V, E)$ and two nodes s and t, find the minimum number of edges whose removal disconnects t from s.

Def. A set of edges $F \subseteq E$ disconnects t from s if all $s - t$ paths use at least one edge in F.

Ex: In testing network reliability
Thm. [Menger 1927] The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

Proof. ≤
Suppose the removal of \(F \subseteq E \) disconnects \(t \) from \(s \), and \(|F| = k \). All s-t paths use at least one edge of \(F \). Hence, the number of edge-disjoint paths is at most \(k \).
Network Connectivity using Min Cut

Thm. [Menger 1927] The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

Proof. ≥
Suppose there are k edge disjoint paths from s to t
So, Max flow is k
So, there is a $s-t$ cut (A,B) s.t., $cap(A,B) = k$
Let F be the edges out of A. So, $|F| = k$.
If we remove F we disconnect t from s.