CSE 421

Vertex Cover / Set Cover

Yin Tat Lee
Approximation Algorithms
How to deal with NP-complete Problem

Many of the important problems are NP-complete.

SAT, Set Cover, Graph Coloring, TSP, Max IND Set, Vertex Cover, ...

So, we cannot find optimum solutions in polynomial time. What to do instead?

• Find optimum solution of special cases (e.g., random inputs)

• Find near optimum solution in the worst case
Approximation Algorithm

We call an algorithm has approximation ratio $\alpha(n)$ if

\[
\frac{\text{Cost of computed solution}}{\text{Cost of the optimum}} \leq \alpha(n)
\]

for any input of length n. (worst case)

Goal: For each NP-hard problem find an poly-time approximation algorithm with the best possible approximation ratio.
Vertex Cover

Given a graph $G = (V, E)$, Find smallest set of vertices touching every edge
Greedy algorithms are typically used in practice to find a (good) solution to NP-hard problems

Strategy (1): Iteratively, include a vertex that covers most new edges

Q: Does this give an optimum solution?
A: No,
Greedy (1): Pick vertex that covers the most

Greedy Vertex cover = 20
OPT Vertex cover = 8
Greedy (1): Pick vertex that covers the most

Greedy Vertex cover = 20
OPT Vertex cover = 8
Greedy (1): Pick vertex that covers the most

\[|B_i| = n/i \]

\[B_n \quad B_{n-1} \quad \ldots \ldots \quad B_1 \]

Greedy pick bottom vertices = \(n + \frac{n}{2} + \frac{n}{3} + \cdots + 1 \approx n \ln n \)

OPT pick top vertices = \(n \)
A Different Greedy Rule

Greedy 2: Iteratively, pick both endpoints of an uncovered edge.

Vertex cover = 6
Greedy 2: Pick Both endpoints of an uncovered edge

Greedy vertex cover = 16

OPT vertex cover = 8
Thm: Size of greedy (2) vertex cover is at most twice as big as size of optimal cover

Pf: Suppose Greedy (2) picks endpoints of edges $e_1, ..., e_k$. Since these edges do not touch, every valid cover must pick one vertex from each of these edges! i.e., $OPT \geq k$.

But the size of greedy cover is $2k$. So, Greedy is a 2-approximation.
Set Cover

Given a number of sets on a ground set of elements,

Goal: choose minimum number of sets that cover all.

- e.g., a company wants to hire employees with certain skills.
Set Cover

Given a number of sets on a ground set of elements,

Goal: choose minimum number of sets that cover all.

Set cover = 4
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

Thm: Greedy has $\ln n$ approximation ratio
A Tight Example for Greedy

Greedy = 5

OPT = 2
Greedy Gives $O(\log(n))$ approximation

Thm: If the best solution has k sets, greedy finds at most $k \ln(n)$ sets.

Pf: Suppose $\text{OPT} = k$
There is set that covers $\frac{1}{k}$ fraction of remaining elements, since there are k sets that cover all remaining elements. So in each step, algorithm will cover $\frac{1}{k}$ fraction of remaining elements.

#elements uncovered after t steps

$$\leq n \left(1 - \frac{1}{k}\right)^t \leq ne^{-\frac{t}{k}}$$

So after $t = k \ln n$ steps, # uncovered elements < 1.
Approximation Algorithm Summary

• The best known approximation algorithm for set cover is the greedy.
 – It is NP-Complete to obtain better than $\ln(n)$ approximation ratio for set cover.

• The best known approximation algorithm for vertex cover is the greedy.
 – It has been open for 40 years to obtain a polynomial time algorithm with approximation ratio better than 2

• There is a long list of questions we do not know the best approximation algorithm.

• https://www.youtube.com/watch?v=n7v9psW3Qwo

• https://en.wikipedia.org/wiki/Unique_games_conjecture