Median
Selecting k-th smallest

Problem: Given numbers x_1, \ldots, x_n and an integer $1 \leq k \leq n$
output the k-th smallest number
\[\text{Sel}([x_1, \ldots, x_n], k) \]

A simple algorithm: Sort the numbers in time $O(n \log n)$ then return the k-th smallest in the array.

Can we do better?

Yes, in time $O(n)$ if $k = 1$ or $k = 2$.

Can we do $O(n)$ for all possible values of k?
An Idea

Choose a number w from x_1, \ldots, x_n

Define

- $S_< (w) = \{ x_i : x_i < w \}$
- $S_= (w) = \{ x_i : x_i = w \}$
- $S_> (w) = \{ x_i : x_i > w \}$

Solve the problem recursively as follows:

- If $k \leq |S_< (w)|$, output $Sel(S_< (w), k)$
- Else if $k \leq |S_< (w)| + |S_= (w)|$, output w
- Else output $Sel(S_> (w), k - |S_< (w)| - |S_= (w)|)$

Ideally want $|S_< (w)|, |S_> (w)| \leq n/2$. In this case ALG runs in $O(n) + O \left(\frac{n}{2} \right) + O \left(\frac{n}{4} \right) + \cdots + O(1) = O(n)$.

Can be computed in linear time
How to choose w?

Suppose we choose w uniformly at random similar to the pivot in quicksort. Then, \(\mathbb{E}[|S_<(w)|] = \mathbb{E}[|S_>(w)|] = n/2 \). Algorithm runs in \(O(n) \) in expectation. Can we get \(O(n) \) running time deterministically?

- Partition numbers into sets of size 3.
- Sort each set (takes \(O(n) \))
- \(w = \text{Sel(midpoints, } n/6) \)
Assume all numbers are distinct for simplicity.

How to lower bound $|S_<(w)|, |S_>(w)|$?

- $|S_<(w)| \geq 2 \left(\frac{n}{6} \right) = \frac{n}{3}$
- $|S_>(w)| \geq 2 \left(\frac{n}{6} \right) = \frac{n}{3}$.

So, what is the running time?
Assume all numbers are distinct for simplicity.

Asymptotic Running Time?

- If $k \leq |S_{<}(w)|$, output $Sel(S_{<}(w), k)$
- Else if $k \leq |S_{<}(w)| + |S_{\leq}(w)|$, output w
- Else output $Sel(S_{>}(w), k - |S_{<}(w)| - |S_{\leq}(w)|)$

Where $\frac{n}{3} \leq |S_{<}(w)|, |S_{>}(w)| \leq \frac{2n}{3}$

$$T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + O(n) \Rightarrow T(n) = O(n \log n)$$
An Improved Idea

Partition into \(\frac{n}{5} \) sets. Sort each set and set \(w = Sel(midpoints, \frac{n}{10}) \)

- \(|S_{<}(w)| \geq 3 \left(\frac{n}{10} \right) = \frac{3n}{10} \)
- \(|S_{>}(w)| \geq 3 \left(\frac{n}{10} \right) = \frac{3n}{10} \)

\[
T(n) = T \left(\frac{n}{5} \right) + T \left(\frac{7n}{10} \right) + O(n) \Rightarrow T(n) = O(n)
\]
An Improved Idea

Sel(S, k) {
 n ← |S|
 If (n < ??) return ??
 Partition S into n/5 sets of size 5
 Sort each set of size 5 and let M be the set of medians, so |M|=n/5
 Let w=Sel(M,n/10)
 For i=1 to n{
 If x_i < w add x to S_(<w)
 If x_i > w add x to S_(>w)
 If x_i = w add x to S_(=w)
 }
 If (k ≤ |S_(<w)|)
 return Sel(S_(<w),k)
 else if (k ≤ |S_(<w)| + |S_(=w)|)
 return w;
 else
 return Sel(S_(>w),k − |S_(<w)| − |S_(=w)|)
}
Weighted Interval Scheduling
Interval Scheduling

- Job j starts at $s(j)$ and finishes at $f(j)$ and has weight w_j
- Two jobs compatible if they don’t overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

![Diagram of intervals]

Time: 0 1 2 3 4 5 6 7 8 9 10 11
Unweighted Interval Scheduling: Review

Recall: Greedy algorithm works if all weights are 1:
- Consider jobs in ascending order of finishing time
- Add job to a subset if it is compatible with prev added jobs.

Observation: Greedy ALG fails spectacularly if arbitrary weights are allowed:

[Diagram showing two schedules with different weights, illustrating the failure of the greedy algorithm.]
Weighted Job Scheduling by Induction

Suppose 1, ..., n are all jobs. Let us use induction:

IH: Suppose we can compute the optimum job scheduling for < n jobs.

IS: Goal: For any n jobs we can compute OPT.

Case 1: Job n is not in OPT.
-- Then, just return OPT of 1, ..., n - 1.

Case 2: Job n is in OPT.
-- Then, delete all jobs not compatible with n and recurse.

Q: Are we done?
A: No, How many subproblems are there? Potentially 2^n all possible subsets of jobs.

This idea works for any Optimization problem.

For NP-hard problems there is no ordering to reduce # subproblems.
Sorting to Reduce Subproblems

Sorting Idea: Label jobs by finishing time \(f(1) \leq \cdots \leq f(n) \)

IS: For jobs 1, ..., \(n \) we want to compute OPT

Case 1: Suppose OPT has job \(n \).
- So, all jobs \(i \) that are not compatible with \(n \) are not OPT
- Let \(p(n) \) = largest index \(i < n \) such that job \(i \) is compatible with \(n \).
- Then, we just need to find OPT of 1, ..., \(p(n) \)
Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$

IS: For jobs 1, ..., n we want to compute OPT

Case 1: Suppose OPT has job n.
- So, all jobs i that are not compatible with n are not OPT
- Let $p(n) =$ largest index $i < n$ such that job i is compatible with n.
- Then, we just need to find OPT of 1, ..., $p(n)$

Take best of the two

Case 2: OPT does not select job n.
- Then, OPT is just the OPT of 1, ..., $n - 1$

Q: Have we made any progress (still reducing to two subproblems)?
A: Yes! This time every subproblem is of the form 1, ..., i for some i
So, at most n possible subproblems.
Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time \(f(1) \leq \cdots \leq f(n) \)
Def \(OPT(j) \) denote the weight of OPT solution of \(1, \ldots, j \)

To solve \(OPT(j) \):

Case 1: \(OPT(j) \) has job \(j \).
- So, all jobs \(i \) that are not compatible with \(j \) are not \(OPT(j) \).
- Let \(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).
- So \(OPT(j) = OPT(p(j)) + w_j \).

Case 2: \(OPT(j) \) does not select job \(j \).
- Then, \(OPT(j) = OPT(j - 1) \).

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left(w_j + OPT(p(j)), OPT(j - 1) \right) & \text{o. w.}
\end{cases}
\]
Input: \(n, \, s(1), \ldots, s(n) \) and \(f(1), \ldots, f(n) \) and \(w_1, \ldots, w_n \).

Sort jobs by finish times so that \(f(1) \leq f(2) \leq \cdots f(n) \).

Compute \(p(1), p(2), \ldots, p(n) \)

\[
OPT(j) \{ \\
\quad \text{if } (\, j = 0 \,) \text{ return 0} \\
\quad \text{else} \text{ return } \max (w_j + \, OPT(p(j)), \, OPT(j - 1)) .
\}
\]
Recursive Algorithm Fails

Even though we have only n subproblems, we do not store the solution to the subproblems

- So, we may re-solve the same problem many many times.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence

\[p(1) = 0, p(j) = j - 2 \]
Algorithm with Memoization

Memorization. Compute and Store the solution of each sub-problem in a cache the first time that you face it. lookup as needed.

Input: \(n, s(1), \ldots, s(n) \) and \(f(1), \ldots, f(n) \) and \(w_1, \ldots, w_n. \)

Sort jobs by finish times so that \(f(1) \leq f(2) \leq \cdots f(n). \)

Compute \(p(1), p(2), \ldots, p(n) \)

for \(j = 1 \) to \(n \)
 \(M[j] = \text{empty} \)
\(M[0] = 0 \)

\(OPT(j) \) {
 if (\(M[j] \) is empty)
 \(M[j] = \max (w_j + OPT(p(j)), OPT(j - 1)) \).
 return \(M[j] \)
}

In practice, you may get stack overflow if \(n \gg 10^6 \) (depends on the language).
You can also avoid recursion
• recursion may be easier conceptually when you use induction

Input: \(n, s(1), ..., s(n) \) and \(f(1), ..., f(n) \) and \(w_1, ..., w_n \).

Sort jobs by finish times so that \(f(1) \leq f(2) \leq ... f(n) \).

Compute \(p(1), p(2), ..., p(n) \)

\[
OPT(j) \{
 M[0] = 0
 for \ j = 1 \ to \ n
 M[j] = \max (w_j + M[p(j)], M[j-1]).
\}

Output \(M[n] \)

Claim: \(M[j] \) is value of \(OPT(j) \)

Timing: Easy. Main loop is \(O(n) \); sorting is \(O(n \log n) \).
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).
\(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left(w_j + OPT(p(j)), OPT(j - 1) \right) & \text{o.w.}
\end{cases}
\]
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).

\(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left(w_j + OPT(p(j)), OPT(j-1) \right) & \text{otherwise}
\end{cases}
\]

<table>
<thead>
<tr>
<th>(j)</th>
<th>(w_j)</th>
<th>(p(j))</th>
<th>(OPT(j))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).

\(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left(w_j + OPT(p(j)), OPT(j-1) \right) & \text{o.w.}
\end{cases}
\]
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.

$p(j) = \text{largest index } i < j \text{ such that job } i \text{ is compatible with } j$.

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left(w_j + OPT(p(j)), OPT(j - 1) \right) & \text{o.w.}
\end{cases}
\]
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.

$p(j) = \text{largest index } i < j \text{ such that job } i \text{ is compatible with } j$.

\[OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \{ w_j + OPT(p(j)), OPT(j - 1) \} & \text{otherwise}
\end{cases} \]
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).
\(p(j) \) = largest index \(i < j \) such that job \(i \) is compatible with \(j \).

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left(w_j + OPT(p(j)), OPT(j - 1) \right) & \text{o.w.}
\end{cases}
\]

<table>
<thead>
<tr>
<th>(j)</th>
<th>(w_j)</th>
<th>(p(j))</th>
<th>(OPT(j))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).

\(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left(w_j + OPT(p(j)), OPT(j-1) \right) & \text{o.w.}
\end{cases}
\]

<table>
<thead>
<tr>
<th>(j)</th>
<th>(w_j)</th>
<th>(p(j))</th>
<th>(OPT(j))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Diagram showing job durations and finish times.
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$p(j) = \text{largest index } i < j \text{ such that job } i \text{ is compatible with } j$.

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left(w_j + OPT(p(j)), OPT(j-1) \right) & \text{o.w.}
\end{cases}
\]
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.

$p(j) = \text{largest index } i < j \text{ such that job } i \text{ is compatible with } j$.

$$OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max (w_j + OPT(p(j)), OPT(j-1)) & \text{o.w.}
\end{cases}$$

<table>
<thead>
<tr>
<th>j</th>
<th>w_j</th>
<th>p(j)</th>
<th>OPT(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$. $p(j)$ = largest index $i < j$ such that job i is compatible with j.

\[OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left(w_j + OPT(p(j)), OPT(j - 1) \right) & \text{o.w.}
\end{cases} \]
Dynamic Programming

• Give a solution of a problem using smaller (overlapping) sub-problems where
 the parameters of all sub-problems are determined in-advance

• Useful when the same subproblems show up again and again in the solution.
Knapsack Problem
Knapsack Problem

Given n objects and a "knapsack."
Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$.
Knapsack has capacity of W kilograms.

Goal: fill knapsack so as to maximize total value.

Ex: OPT is $\{3, 4\}$ with value 40.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

$W = 11$

Greedy: repeatedly add item with maximum ratio v_i/w_i.

Ex: $\{5, 2, 1\}$ achieves only value = 35 \Rightarrow greedy not optimal.
Dynamic Programming: First Attempt

Let $OPT(i) = \text{Max value of subsets of items } 1, \ldots, i \text{ of weight } \leq W$.

Case 1: $OPT(i)$ does not select item i
- In this case $OPT(i) = OPT(i - 1)$

Case 2: $OPT(i)$ selects item i
- In this case, item i does not immediately imply we have to reject other items
- The problem does not reduce to $OPT(i - 1)$ because we now want to pack as much value into box of weight $\leq W - w_i$

Conclusion: We need more subproblems, we need to strengthen IH.
Stronger DP (Strengthening Hypothesis)

Let $OPT(i, w) = \text{Max value of subsets of items } 1, ..., i \text{ of weight } \leq w$

Case 1: $OPT(i, w)$ selects item i
- In this case, $OPT(i, w) = v_i + OPT(i - 1, w - w_i)$

Case 2: $OPT(i, w)$ does not select item i
- In this case, $OPT(i, w) = OPT(i - 1, w)$.

Therefore,

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i - 1, w) & \text{if } w_i > w \\ \max(OPT(i - 1, w), v_i + OPT(i - 1, w - w_i)) & \text{o.w.,} \end{cases}$$
DP for Knapsack

Recursive

```plaintext
Compute-OPT(i, w)
    if M[i, w] == empty
        if (i==0)
            M[i, w] = 0
        else if (w_i > w)
            M[i, w] = Comp-OPT(i-1, w)
        else
            M[i, w] = max {Comp-OPT(i-1, w), v_i + Comp-OPT(i-1, w-w_i)}
    return M[i, w]
```

Non-recursive

```plaintext
for w = 0 to W
    M[0, w] = 0
for i = 1 to n
    for w = 1 to W
        if (w_i > w)
            M[i, w] = M[i-1, w]
        else
            M[i, w] = max {M[i-1, w], v_i + M[i-1, w-w_i]}
    return M[n, W]
```
DP for Knapsack

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

The table represents the dynamic programming solution for the knapsack problem. The 2D array `M[i, w]` is filled with values that represent the maximum value that can be achieved with a subset of the first `i` items and a weight limit of `w`.

Algorithm

1. Initialize the base cases:
 - `M[0, w] = 0` for all `w`.
 - `M[i, 0] = 0` for all `i`.

2. For each item `i` and weight `w` with `0 ≤ i ≤ n` and `0 ≤ w ≤ W`, calculate:
 - If the weight of the current item, `w_i`, is greater than the current weight, `w`, then:

 \[
 M[i, w] = M[i-1, w]
 \]

 - Else, calculate:

 \[
 M[i, w] = \max\{M[i-1, w], v_i + M[i-1, w-w_i]\}
 \]

3. The final answer is `M[n, W]`.

Example:

```
Item: 1, 2, 3, 4, 5
Value: 1, 6, 18, 22, 28
Weight: 1, 2, 5, 6, 7

Matrix:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ</td>
<td>0</td>
</tr>
<tr>
<td>{1}</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>{1,2}</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>{1,2,3}</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>{1,2,3,4}</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>{1,2,3,4,5}</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
```

For instance, to find the maximum value that can be achieved with a weight of `W = 11`:

\[
M[5, 11] = \max\{M[4, 11], v_5 + M[4, 11-w_5]\} = \max\{0, 28 + 0\} = 28
\]

The final value `M[5, 11]` is 28.
DP for Knapsack

Table

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

Algorithm

if \(w_i > w \)

\[
M[i, w] = M[i-1, w]
\]

else

\[
M[i, w] = \max \{ M[i-1, w], v_i + M[i-1, w-w_i] \}
\]
DP for Knapsack

Item	**Value**	**Weight**
1 | 1 | 1
2 | 6 | 2
3 | 18 | 5
4 | 22 | 6
5 | 28 | 7

M[i, w] = max {M[i-1, w], v_i + M[i-1, w-w_i]}

OPT: \{4, 3\}

value = 22 + 18 = 40

if \(w_i > w\)

\[M[i, w] = M[i-1, w]\]

else

\[M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}\]
DP for Knapsack

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

OPT:
- \(\{ 4, 3 \} \)
- Value: \(22 + 18 = 40 \)

Algorithm:
- \(\text{if } (w_i > w) \)\n - \(M[i, w] = M[i-1, w] \)
- \(\text{else} \)\n - \(M[i, w] = \max \{ M[i-1, w], v_i + M[i-1, w-w_i] \} \)
DP for Knapsack

Table:

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

Optimal Solution:

\[
\text{OPT: } \{ 4, 3 \}, \quad \text{value} = 22 + 18 = 40
\]

DP Algorithm:

\[
\begin{align*}
\text{if } & (w_i > w) \\
\quad & M[i, w] = M[i-1, w] \\
\text{else} & \\
\quad & M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}
\end{align*}
\]
DP for Knapsack

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

OPT: \{4, 3\}

\[
\text{value} = 22 + 18 = 40
\]

\[
\begin{align*}
\text{if } (w_i > w) & \quad \text{then} \\
M[i, w] &= M[i-1, w] \\
\text{else} & \\
M[i, w] &= \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}
\end{align*}
\]

\[
W = 11
\]
Knapsack Problem: Running Time

Running time: $\Theta(n \cdot W)$

- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm:
There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum in time $\text{Poly}(n, \log W)$.
DP Ideas so far

• You may have to define an ordering to decrease subproblems

• You may have to strengthen DP, equivalently the induction, i.e., you have may have to carry more information to find the Optimum.

• This means that sometimes we may have to use two dimensional or three dimensional induction