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Selecting k-th smallest

Problem: Given numbers 𝑥1, … , 𝑥𝑛 and an integer 1 ≤ 𝑘 ≤ 𝑛
output the 𝑘-th smallest number

Sel( 𝑥1, … , 𝑥𝑛 , 𝑘)

A simple algorithm: Sort the numbers in time 𝑂(𝑛 log 𝑛) then 
return the 𝑘-th smallest in the array.

Can we do better?

Yes, in time 𝑂(𝑛) if 𝑘 = 1 or 𝑘 = 2.

Can we do 𝑂 𝑛 for all possible values of k?



An Idea

Choose a number 𝑤 from 𝑥1, … , 𝑥𝑛

Define

• 𝑆< 𝑤 = 𝑥𝑖: 𝑥𝑖 < 𝑤

• 𝑆= 𝑤 = 𝑥𝑖: 𝑥𝑖 = 𝑤

• 𝑆> 𝑤 = 𝑥𝑖: 𝑥𝑖 > 𝑤

Solve the problem recursively as follows:

• If 𝑘 ≤ |𝑆<(𝑤)|, output 𝑆𝑒𝑙(𝑆< 𝑤 , 𝑘)

• Else if 𝑘 ≤ 𝑆< 𝑤 + 𝑆= 𝑤 , output w

• Else output 𝑆𝑒𝑙(𝑆> 𝑤 , 𝑘 − |𝑆< 𝑤 | − |𝑆= 𝑤 |)

Ideally want 𝑆< 𝑤 , |𝑆>(𝑤)| ≤ 𝑛/2. In this case ALG runs in 

𝑂 𝑛 + 𝑂
𝑛

2
+ 𝑂

𝑛

4
+⋯+ 𝑂 1 = 𝑂 𝑛 .

Can be computed in 

linear time



How to choose w?

Suppose we choose w uniformly at random 

similar to the pivot in quicksort.

Then, 𝔼 𝑆< 𝑤 = 𝔼 𝑆> 𝑤 = 𝑛/2. Algorithm runs in 𝑂(𝑛) in expectation.

Can we get 𝑂(𝑛) running time deterministically?

• Partition numbers into sets of size 3.

• Sort each set (takes O(n))

• 𝑤 = 𝑆𝑒𝑙(𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛/6)
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• 𝑆< 𝑤 ≥ 2
𝑛

6
=

𝑛

3

• 𝑆> 𝑤 ≥ 2
𝑛

6
=

𝑛

3
.

So, what is the running time?

How to lower bound 𝑆< 𝑤 , |𝑆> 𝑤 |?
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Assume all numbers are distinct for simplicity.



• If 𝑘 ≤ |𝑆<(𝑤)|, output 𝑆𝑒𝑙(𝑆< 𝑤 , 𝑘)

• Else if 𝑘 ≤ 𝑆< 𝑤 + 𝑆= 𝑤 , output w

• Else output 𝑆𝑒𝑙(𝑆> 𝑤 , 𝑘 − |𝑆< 𝑤 | − |𝑆= 𝑤 |)

Where
𝑛

3
≤ 𝑆< 𝑤 , 𝑆> 𝑤 ≤

2𝑛

3

𝑇 𝑛 = 𝑇
𝑛

3
+ 𝑇

2𝑛

3
+ 𝑂 𝑛 ⇒ 𝑇 𝑛 = 𝑂(𝑛 log 𝑛)

Asymptotic Running Time?
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So, what is the point?

Assume all numbers are distinct for simplicity.



Partition into n/5 sets. Sort each set and set 𝑤 = 𝑆𝑒𝑙(𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛/10)

• 𝑆< 𝑤 ≥ 3
𝑛
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An Improved Idea
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An Improved Idea

Sel(S, k) {

𝒏 ← 𝑺

If (n < ??) return ??

Partition S into n/5 sets of size 5

Sort each set of size 5 and let M be the set of medians, so |M|=n/5

Let w=Sel(M,n/10)

For i=1 to n{

If 𝒙𝒊 < 𝒘 add x to 𝑺< 𝒘

If 𝒙𝒊 > 𝒘 add x to 𝑺> 𝒘

If 𝒙𝒊 = 𝒘 add x to 𝑺=(𝒘)

}

If (𝒌 ≤ |𝑺< 𝒘 |)

return Sel(𝑺< 𝒘 ,𝒌)

else if (𝒌 ≤ 𝑺< 𝒘 + |𝑺= 𝒘 |)

return w;

else

return Sel(𝑺> 𝒘 ,𝒌 − 𝑺< 𝒘 − |𝑺=(𝒘)|)

}

We can maintain each

set in an array 



Weighted Interval Scheduling



Interval Scheduling

• Job 𝑗 starts at 𝑠(𝑗) and finishes at 𝑓 𝑗 and has weight 𝑤𝑗
• Two jobs compatible if they don’t overlap.

• Goal: find maximum weight subset of mutually compatible jobs.
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Unweighted Interval Scheduling: Review

Recall: Greedy algorithm works if all weights are 1:

• Consider jobs in ascending order of finishing time

• Add job to a subset if it is compatible with prev added jobs.

Observation: Greedy ALG fails spectacularly if arbitrary weights are 

allowed:
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Weighted Job Scheduling by Induction

Suppose 1,… , 𝑛 are all jobs. Let us use induction:

IH: Suppose we can compute the optimum job scheduling for < 𝑛 jobs.

IS: Goal: For any 𝑛 jobs we can compute OPT.

Case 1: Job 𝑛 is not in OPT.

-- Then, just return OPT of 1,… , 𝑛 − 1.

Case 2: Job 𝑛 is in OPT.

-- Then, delete all jobs not compatible with n and recurse. 

Q: Are we done?

A: No, How many subproblems are there?

Potentially 2𝑛 all possible subsets of jobs. 
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Take best of the two

𝑛

𝑛 − 1 𝑛 − 2

𝑛 − 2 𝑛 − 3 𝑛 − 3 𝑛 − 4

This idea works for any 

Optimization problem.

For NP-hard problems there is no 

ordering to reduce # subproblems



Sorting to Reduce Subproblems

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

IS: For jobs 1,… , 𝑛 we want to compute OPT

Case 1: Suppose OPT has job 𝑛. 

• So, all jobs 𝑖 that are not compatible with 𝑛 are not OPT

• Let 𝑝 𝑛 = largest index 𝑖 < 𝑛 such that job 𝑖 is compatible with 𝑛.

• Then, we just need to find OPT of 1,… , 𝑝(𝑛)

14
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Sorting to reduce Subproblems

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

IS: For jobs 1,… , 𝑛 we want to compute OPT

Case 1: Suppose OPT has job 𝑛. 

• So, all jobs 𝑖 that are not compatible with 𝑛 are not OPT

• Let 𝑝(𝑛) = largest index 𝑖 < 𝑛 such that job 𝑖 is compatible with 𝑛.

• Then, we just need to find OPT of 1,… , 𝑝(𝑛)

Case 2: OPT does not select job 𝑛.

• Then, OPT is just the OPT of 1,… , 𝑛 − 1

Q: Have we made any progress (still reducing to two subproblems)?

A: Yes! This time every subproblem is of the form 1,… , 𝑖 for some 𝑖

So, at most 𝑛 possible subproblems.
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Take best of the two



Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

Def 𝑂𝑃𝑇(𝑗) denote the weight of OPT solution of 1,… , 𝑗

To solve 𝑂𝑃𝑇(𝑗):

Case 1: 𝑂𝑃𝑇(𝑗) has job 𝑗. 

• So, all jobs 𝑖 that are not compatible with 𝑗 are not 𝑂𝑃𝑇(𝑗).

• Let 𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

• So 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇 𝑝 𝑗 + 𝑤𝑗 .

Case 2: 𝑂𝑃𝑇(𝑗) does not select job 𝑗.

• Then, 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇(𝑗 − 1).

𝑂𝑃𝑇 𝑗 = ቐ
0 if 𝑗 = 0

max 𝑤𝑗 + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 o.w.
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The most important part of a correct DP; It fixes IH 



Algorithm

17

Input: 𝒏, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … , 𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

𝑶𝑷𝑻(𝒋) {

if ( 𝒋 = 𝟎 )

return 𝟎
else

return 𝒎𝒂𝒙 (𝒘𝒋 + 𝑶𝑷𝑻 𝒑 𝒋 ,𝑶𝑷𝑻 𝒋 − 𝟏 ).
}



Recursive Algorithm Fails

Even though we have only 𝑛 subproblems, we do not store the 

solution to the subproblems

 So, we may re-solve the same problem many many times.

Ex.  Number of recursive calls for family of "layered" instances 

grows like Fibonacci sequence
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Algorithm with Memoization
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Input: 𝒏, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

for j = 1 to n

M[j] = empty

M[0] = 0

𝑶𝑷𝑻(𝒋) {

if (M[j] is empty)

M[j] = 𝒎𝒂𝒙 (𝒘𝒋 + 𝑶𝑷𝑻 𝒑 𝒋 ,𝑶𝑷𝑻 𝒋 − 𝟏 ).
return M[j]

}

Memorization.  Compute and Store the solution of each sub-problem  

in a cache the first time that you face it. lookup as needed.

In practice, you may get stack overflow if 𝑛 ≫ 106 (depends on the language).



Bottom up Dynamic Programming
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Input: 𝒏, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

𝑶𝑷𝑻(𝒋) {

M[0] = 0

for j = 1 to n

M[j] = 𝒎𝒂𝒙 (𝒘𝒋 +𝑴 𝒑 𝒋 ,𝑴 𝒋 − 𝟏 ).
}

Output M[n]

You can also avoid recursion

• recursion may be easier conceptually when you use induction

Claim: 𝑀[𝑗] is value of 𝑂𝑃𝑇(𝑗)
Timing: Easy.  Main loop is 𝑂(𝑛); sorting is 𝑂(𝑛 log 𝑛).



Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .

𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.
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• Give a solution of a problem using smaller (overlapping) 
sub-problems where 

the parameters of all sub-problems are determined in-advance

• Useful when the same subproblems show up again and 
again in the solution. 

Dynamic Programming



Knapsack Problem



Knapsack Problem

Given 𝑛 objects and a "knapsack.“

Item 𝑖 weighs 𝑤𝑖 > 0 kilograms and has value 𝑣𝑖 > 0.

Knapsack has capacity of 𝑊 kilograms.

Goal: fill knapsack so as to maximize total value.

Ex: OPT is { 3, 4 } with value 40.

Greedy:  repeatedly add item with maximum ratio 𝑣𝑖/𝑤𝑖.

Ex:  { 5, 2, 1 } achieves only value = 35   greedy not optimal.
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1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2W = 11



Dynamic Programming: First Attempt

Let 𝑂𝑃𝑇 𝑖 = Max value of subsets of items 1,… , 𝑖 of weight ≤ 𝑊.

Case 1: 𝑂𝑃𝑇(𝑖) does not select item 𝑖
- In this case 𝑂𝑃𝑇(𝑖) = 𝑂𝑃𝑇(𝑖 − 1)

Case 2: 𝑂𝑃𝑇(𝑖) selects item 𝑖
• In this case, item 𝑖 does not immediately imply we have to reject 

other items

• The problem does not reduce to 𝑂𝑃𝑇(𝑖 − 1) because we now 

want to pack as much value into box of weight ≤ 𝑊 −𝑤𝑖

Conclusion: We need more subproblems, we need to strengthen IH.
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Stronger DP (Strengthening Hypothesis)

Let 𝑂𝑃𝑇(𝑖, 𝑤) = Max value of subsets of items 1,… , 𝑖 of weight ≤ 𝑤

Case 1: 𝑂𝑃𝑇(𝑖, 𝑤) selects item 𝑖

• In this case, 𝑂𝑃𝑇 𝑖, 𝑤 = 𝑣𝑖 + 𝑂𝑃𝑇(𝑖 − 1,𝑤 − 𝑤𝑖)

Case 2: 𝑂𝑃𝑇 𝑖, 𝑤 does not select item 𝑖

• In this case, 𝑂𝑃𝑇 𝑖, 𝑤 = 𝑂𝑃𝑇(𝑖 − 1,𝑤).

Therefore,
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𝑂𝑃𝑇 𝑖, 𝑤 = ቐ

0
𝑂𝑃𝑇 𝑖 − 1,𝑤
max(𝑂𝑃𝑇 𝑖 − 1,𝑤 , 𝑣𝑖 + 𝑂𝑃𝑇 𝑖 − 1,𝑤 − 𝑤𝑖 )

Take best of the two

If 𝑖 = 0
If 𝑤𝑖 > 𝑤
o.w.,



DP for Knapsack
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for w = 0 to W

M[0, w] = 0

for i = 1 to n

for w = 1 to W

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}

return M[n, W]

Compute-OPT(i,w)

if M[i,w] == empty 

if (i==0)

M[i,w]=0

else if (wi > w)

M[i,w]=Comp-OPT(i-1,w)

else

M[i,w]= max {Comp-OPT(i-1,w), vi + Comp-OPT(i-1,w-wi)}        

return M[i, w]

recursive

Non-recursive
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n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2



{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

0

10

0

11

0

W + 1

W = 11

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}
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n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2



{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

2

0

1

3

0

1

4

0

1

5

0

1

6

0

1

7

0

1

8

0

1

9

0

1

10

0

1

11

0

1

W + 1

W = 11

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}
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n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2



{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

1

3

0

1

4

0

1

5

0

1

6

0

1

7

0

1

8

0

1

9

0

1

10

0

1

11

0

1

W + 1

W = 11

OPT:  { 4, 3 }
value = 22 + 18 = 40

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}

7
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n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

W + 1

W = 11

OPT:  { 4, 3 }
value = 22 + 18 = 40

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}



{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

1

3

0

7

7

1

4

0

7

7

1

5

0

7

18

1

6

0

7

1

7

0

7

1

8

0

7

1

9

0

7

1

10

0

7

1

11

0

7

1

19
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n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

W + 1

W = 11

OPT:  { 4, 3 }
value = 22 + 18 = 40

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}



{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

3

0

7

7

7

1

4

0

7

7

7

1

5

0

7

18

18

1

6

0

7

19

22

1

7

0

7

24

24

1

8

0

7

25

28

1

9

0

7

25

1

10

0

7

25

1

11

0

7

25

1

29
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n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

W + 1

W = 11

OPT:  { 4, 3 }
value = 22 + 18 = 40

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}



{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40



Knapsack Problem: Running Time

Running time: Θ(𝑛 ⋅ 𝑊)

• Not polynomial in input size!

• "Pseudo-polynomial.“

• Decision version of Knapsack is NP-complete. 

Knapsack approximation algorithm:  

There exists a polynomial algorithm that produces a feasible 

solution that has value within 0.01% of optimum 

in time Poly(𝑛,log𝑊).
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UW Expert in similar problems



DP Ideas so far

• You may have to define an ordering to decrease 

#subproblems

• You may have to strengthen DP, equivalently the induction, 

i.e., you have may have to carry more information to find the 

Optimum. 

• This means that sometimes we may have to use two 

dimensional or three dimensional induction
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