
CSE 421

Divide and Conquer / Multiplication &

Median

Yin Tat Lee

1

Integer Multiplication

Matlab code is included in the pptx.

For this class, you just need to remember

FFT and convolution can be done in O(n log n) time

Convolution
Recall that

𝑓 ∗ 𝑔 𝑡 =
𝑘=−∞

∞

𝑓𝑘𝑔𝑡−𝑘 .

Question: Why we can solve integer multiplication using convolution?

2-D Convolution (just for fun)

𝑓 ∗ 𝑔 𝑡1,𝑡2 =
𝑘1,𝑘2=−∞

∞

𝑓𝑘1,𝑘2𝑔𝑡1−𝑘1,𝑡2−𝑘2 .

1

0.5

0.5

-4

Convolution neural network (just for fun)

Convolution is a way to extract information from data.

But how can we design what kernel to use?

Optimization…

Circular Convolution

Given 𝑓0, 𝑓1, ⋯ , 𝑓𝑁−1; 𝑔0, 𝑔1, ⋯ , 𝑔𝑁−1

𝑓 ∗ 𝑔 𝑡 =
𝑘=0

𝑁−1

𝑓𝑘𝑔𝑡−𝑘 mod 𝑁 .

Question: If we can compute circular convolution in time 𝑂(𝑛 log 𝑛),
then we can calculate convolution in time 𝑂(𝑛 log 𝑛).

Discrete Fourier Transform

Given 𝑥0, 𝑥1, ⋯ , 𝑥𝑁−1 ∈ ℂ;

ℱ 𝑥 𝑘 =
𝑛=0

𝑁−1

𝑥𝑛 ⋅ 𝑒
−
2𝜋𝑖
𝑁 𝑘𝑛 =

𝑛=0

𝑁−1

𝑥𝑛 ⋅ cos(
2𝜋𝑘𝑁

𝑛
) − 𝑖 sin(

2𝜋𝑘𝑁

𝑛
)

What is 𝑒−
2𝜋𝑖

𝑁
𝑘𝑛

looks like for fixed 𝑛 and 𝑁?

Fourier Transform is just the sum of these spirals.

DFT is invertible!

Given 𝑥0, 𝑥1, ⋯ , 𝑥𝑁−1 ∈ ℂ;

ℱ 𝑥 𝑘 =
𝑛=0

𝑁−1

𝑥𝑛 ⋅ 𝑒
−
2𝜋𝑖
𝑁 𝑘𝑛 .

This maps is invertible and hence

𝑥𝑘 =
1

𝑁

𝑛=0

𝑁−1

ℱ 𝑥 𝑛 ⋅ 𝑒
2𝜋𝑖
𝑁 𝑘𝑛 .

This is saying all complex signals can be represented by spirals!

So, you can think 𝑥 is signal, ℱ(𝑥) is the frequency (or opposite).

(just for fun)

Convolution Theorem

Given 𝑥0, 𝑥1, ⋯ , 𝑥𝑁−1 ∈ ℂ;

ℱ 𝑥 𝑘 =
𝑛=0

𝑁−1

𝑥𝑛 ⋅ 𝑒
−
2𝜋𝑖
𝑁 𝑘𝑛 .

Theorem: ℱ 𝑥 ⋅ ℱ 𝑦 = ℱ 𝑥 ∗ 𝑦 .

Corollary: 𝑥 ∗ 𝑦 = ℱ−1(ℱ 𝑥 ⋅ ℱ 𝑦).

Proof:

Let 𝑒𝑖 be a vector that is 1 at index 𝑖 and 0 otherwises.

Note that 𝑥 = ∑𝑥𝑖𝑒𝑖 and 𝑦 = ∑𝑦𝑗𝑒𝑗, then

Then, we have

ℱ 𝑥 ⋅ ℱ 𝑦 = ∑𝑥𝑖ℱ 𝑒𝑖 ⋅ ∑𝑦𝑗ℱ 𝑒𝑗 = ∑𝑥𝑖𝑦𝑗ℱ 𝑒𝑖 ⋅ ℱ 𝑒𝑗

Exercise: ℱ 𝑒𝑖 ⋅ ℱ 𝑒𝑗 = ℱ 𝑒𝑖 ∗ 𝑒𝑗 for all 𝑖, 𝑗,

Hence, ℱ 𝑥 ⋅ ℱ 𝑦 = ∑𝑥𝑖𝑦𝑗ℱ 𝑒𝑖 ∗ 𝑒𝑗 = ℱ ∑𝑥𝑖𝑦𝑗𝑒𝑖 ∗ 𝑒𝑗 = ℱ 𝑥 ∗ 𝑦 .

To compute convolution,

It suffices to compute DFT

Fast Fourier Transform

Given 𝑥0, 𝑥1, ⋯ , 𝑥𝑁−1 ∈ ℂ;

ℱ 𝑥 𝑘 =
𝑛=0

𝑁−1

𝑥𝑛 ⋅ 𝑒
−
2𝜋𝑖
𝑁 𝑘𝑛 .

Integer Multiplication

Median

Selecting k-th smallest

Problem: Given numbers 𝑥1, … , 𝑥𝑛 and an integer 1 ≤ 𝑘 ≤ 𝑛
output the 𝑘-th smallest number

Sel(𝑥1, … , 𝑥𝑛 , 𝑘)

A simple algorithm: Sort the numbers in time 𝑂(𝑛 log 𝑛) then
return the 𝑘-th smallest in the array.

Can we do better?

Yes, in time 𝑂(𝑛) if 𝑘 = 1 or 𝑘 = 2.

Can we do 𝑂 𝑛 for all possible values of k?

An Idea

Choose a number 𝑤 from 𝑥1, … , 𝑥𝑛

Define

• 𝑆< 𝑤 = 𝑥𝑖: 𝑥𝑖 < 𝑤

• 𝑆= 𝑤 = 𝑥𝑖: 𝑥𝑖 = 𝑤

• 𝑆> 𝑤 = 𝑥𝑖: 𝑥𝑖 > 𝑤

Solve the problem recursively as follows:

• If 𝑘 ≤ |𝑆<(𝑤)|, output 𝑆𝑒𝑙(𝑆< 𝑤 , 𝑘)

• Else if 𝑘 ≤ 𝑆< 𝑤 + 𝑆= 𝑤 , output w

• Else output 𝑆𝑒𝑙(𝑆> 𝑤 , 𝑘 − |𝑆< 𝑤 | − |𝑆= 𝑤 |)

Ideally want 𝑆< 𝑤 , |𝑆>(𝑤)| ≤ 𝑛/2. In this case ALG runs in

𝑂 𝑛 + 𝑂
𝑛

2
+ 𝑂

𝑛

4
+⋯+ 𝑂 1 = 𝑂 𝑛 .

Can be computed in

linear time

How to choose w?

Suppose we choose w uniformly at random

similar to the pivot in quicksort.

Then, 𝔼 𝑆< 𝑤 = 𝔼 𝑆> 𝑤 = 𝑛/2. Algorithm runs in 𝑂(𝑛) in expectation.

Can we get 𝑂(𝑛) running time deterministically?

• Partition numbers into sets of size 3.

• Sort each set (takes O(n))

• 𝑤 = 𝑆𝑒𝑙(𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛/6)

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤𝑤

• 𝑆< 𝑤 ≥ 2
𝑛

6
=

𝑛

3

• 𝑆> 𝑤 ≥ 2
𝑛

6
=

𝑛

3
.

So, what is the running time?

How to lower bound 𝑆< 𝑤 , |𝑆> 𝑤 |?

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

w
< <<<< < < < < <

< 𝒘

> 𝒘

𝑛

3
≤ |𝑆< 𝑤 |, 𝑆> 𝑤 ≤

2𝑛

3

Assume all numbers are distinct for simplicity.

• If 𝑘 ≤ |𝑆<(𝑤)|, output 𝑆𝑒𝑙(𝑆< 𝑤 , 𝑘)

• Else if 𝑘 ≤ 𝑆< 𝑤 + 𝑆= 𝑤 , output w

• Else output 𝑆𝑒𝑙(𝑆> 𝑤 , 𝑘 − |𝑆< 𝑤 | − |𝑆= 𝑤 |)

Where
𝑛

3
≤ 𝑆< 𝑤 , 𝑆> 𝑤 ≤

2𝑛

3

𝑇 𝑛 = 𝑇
𝑛

3
+ 𝑇

2𝑛

3
+ 𝑂 𝑛 ⇒ 𝑇 𝑛 = 𝑂(𝑛 log 𝑛)

Asymptotic Running Time?

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

𝑤
< <<<< < < < < <

𝑂(𝑛 log 𝑛) again?

So, what is the point?

Assume all numbers are distinct for simplicity.

Partition into n/5 sets. Sort each set and set 𝑤 = 𝑆𝑒𝑙(𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛/10)

• 𝑆< 𝑤 ≥ 3
𝑛

10
=

3𝑛

10

• 𝑆> 𝑤 ≥ 3
𝑛

10
=

3𝑛

10

𝑇 𝑛 = 𝑇
𝑛

5
+ 𝑇

7𝑛

10
+ 𝑂 𝑛 ⇒ 𝑇 𝑛 = 𝑂(𝑛)

An Improved Idea

< <<<< < < < < <

< 𝒘

> 𝒘

3𝑛

10
≤ |𝑆< 𝑤 |, 𝑆> 𝑤 ≤

7𝑛

10

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

An Improved Idea

Sel(S, k) {

𝒏 ← 𝑺

If (n < ??) return ??

Partition S into n/5 sets of size 5

Sort each set of size 5 and let M be the set of medians, so |M|=n/5

Let w=Sel(M,n/10)

For i=1 to n{

If 𝒙𝒊 < 𝒘 add x to 𝑺< 𝒘

If 𝒙𝒊 > 𝒘 add x to 𝑺> 𝒘

If 𝒙𝒊 = 𝒘 add x to 𝑺=(𝒘)

}

If (𝒌 ≤ |𝑺< 𝒘 |)

return Sel(𝑺< 𝒘 ,𝒌)

else if (𝒌 ≤ 𝑺< 𝒘 + |𝑺= 𝒘 |)

return w;

else

return Sel(𝑺> 𝒘 ,𝒌 − 𝑺< 𝒘 − |𝑺=(𝒘)|)

}

We can maintain each

set in an array

