Reduced schedule: schedule that insert item only when requested.

Lemma: We can transform schedule S to a reduced schedule S' without increasing the number of misses.

Proof: by induction on the number of unreduced misses.

Idea: want to decrease the number of unreduced misses by 1.

Suppose S' brings d into cache at time t without request.

Let c be the item S evicts.

Case 1: d is requested later before it gets evicted.

just evict c when it is used.

Case 2: d is never requested before evicted.

$S' \leq$ schedule has α many unnecessary moves

$S' \leq$ schedule has $\alpha - 1$
Thus FIF is optimal.

Proof by induction. (exchange argument)

Let S_e be the schedule by FIF.

$P(j) =$ "There is an optimal schedule $S \leq S_e$ for the first j steps."

base case: Lemma

IH: $P(j)$ is true

IS: Let S be the schedule given by $P(j)$.

(assumed, $S = S_e$ for first j steps and S is reduced and optimal)

Let d be the $(j+1)$th request.

Case 1: d is in the cache

$S' = S$. S' satisfies $P(j+1)$

Case 2: d is not the cache

and (S and S_e evicts the same item).

$S' = S$. done.

Case 3: $d \in S$, S_e evicts e, S evicts $f \neq e$.
Case 3: \(d \in S \), \(S \) evicts \(e \), \(S \) evicts \(f \neq e \).

Step j

\[\begin{align*}
&\text{same} & \text{elf} & \text{same} & \text{elf} \\
&\text{same} & \text{elf} & \text{same} & \text{elf}
\end{align*} \]

Step j+1

\[\begin{align*}
&\text{same} & \text{elf} & \text{same} & \text{elf} \\
&\text{same} & \text{elf} & \text{same} & \text{elf}
\end{align*} \]

Let \(j' \) is the first time \(S \) and \(S' \) take different actions.

Let \(y \) be the item requested.

Case 3a \(y = e \)

Case 3b \(y = f \)