Thus G has a top order \(\iff \) G is a DAG

Lemma 1: G has top order \(\iff \) G is a DAG

Proof by contradiction: Suppose G has top order \(V_i \).

Suppose G is not a DAG, there is a directed cycle.

Let \(i_i \) be the lowest index in the cycle.

Cycle \(\iff \) there is edge \((V_{i_k}, V_{i_i}) \).

Since \(i_i \) is lowest, \(i_k \geq i_i \).

This contradicts to the fact that G is a top order.

Lemma 2a: If G is a DAG, it has a source node.

(source node = node with no incoming edge)

Proof by construction:

Algorithm:

Start at any node \(V \).

While there is an incoming edge \((u, V) \) from \(V \),

\(V \leftarrow u \).

Output \(V \).

Termination:

No node is repeated in the loop because no directed cycle.

Hence, it takes \(O(n) \) time.

Conclusion: \(V \) is source because of the loop condition.
Correctness: \(V \) is source because of the loop condition.

Lemma 2b: \(G \) is a DAG \(\Rightarrow \) it has topo order

Algorithm:
1. Let \(L \) be empty list
2. While \(G \neq \emptyset \)
 - Find a source \(u \) in \(G \)
 - Put \(u \) in the end of \(L \)
 - Delete \(u \) from \(G \)
3. Output \(L \).

Time: \(O(n^2) = \frac{O(n)}{\text{iter}} \times O(n) \)

Improve this to \(O(m+n) \).

Correctness: We can find a source \(u \) in \(G \) by Lemma 2a, and by \(G \) is DAG.

Let \(V_1, V_2, \ldots, V_n \) be the order algo find.

For any edge \((V_i, V_j)\)
- \(i < j \) because the algo do job \(V_j \) only if all incoming edge to \(V_j \) is removed/done.

Proof of theorem follows from Lem 1 and Lem 2b.