Indeped set:
Given $G = (V, E)$, $k \in \mathbb{Z}$.
Is there $S \subseteq U$ s.t. $|S| \geq k$ s.t. no 2 vertices in S are joined by edge.

Clique:
Given $G = (V, E)$, k.
Is there $S \subseteq U$ s.t. $|S| \geq k$ s.t. every 2 vertices in S are joined by edge.

Claim: Ind set $\leq P$ clique, clique $\leq P$ Ind

Proof: Let $x = (G, k)$

$s(x) = (\overline{G}, k')$ where $e' \in G \iff e \notin \overline{G}$

S is indep in G \iff S is clique in \overline{G}

Vertex Cover:
Given $G = (V, E)$, k.
Is there $S \subseteq U$ s.t. $|S| \leq k$ s.t. every edge has 1 end pt in S.

Claim: Vertex cover \geq indep set.
Proof:
\[X = (G, k) \quad (\text{indep set}) \]
\[f(X) = (G, n-k) \]

Need to prove: If \(S \) is indep then \(V-S \) is vertex cover.

\[\Rightarrow \]

If \(\forall e \in E \), only 1 end pt in \(S \) has \(\leq 1 \) end pt in \(V-S \).

Set Cover:

Given \(U \), collection of subsets \(S_1, \ldots, S_m \subseteq U \), \(k \).

Is there \(k \) sets such that \(\bigcup_{i=1}^{m} S_i \supseteq U \)?

Claim: Vertex cover \(\leq \) set cover

Proof:
\[X = (G-(V,E), k) \quad (\text{vertex cover}) \]
\[f(X) = \bigcup U = E \]
\[S_v = \{(u,v) \in E \} \]

\[\exists \rightarrow \exists \neg \exists R \rightarrow K \]
T is vertex cover \iff \{ S \cup \{ u \} \mid u \in T \} is set cover