Lemma: binary tree $T \rightarrow$ Huffman Tree H via inversion.

Proof by induction.

I: At k^th iteration of Huffman, all nodes in the Q is a subtree of T (after inversions).

Base case: all nodes in Q are leaves of T.

IS: Huffman picks A, B from Q and form a new tree in Q.

By I, we know, A and B are sub tree of T (after...)

Case 1: A, B are siblings in T.

Then N is a subtree of T.

No swapping is needed.

Case 2: A, B are at sib in T.

WLOG, depth(A) \geq depth(B)

Let C be sib of A.

Want to swap C, B.

Note that

- $\text{Freq}(C) \geq \text{Freq}(B)$ (Huffman picks 2min)
- $\text{depth}(C) > \text{depth}(A) > \text{depth}(B)$
- \text{size}(C) = \text{size}(A)$ (minimum size within B)
- $\text{depth}(C) = \text{depth}(A) > \text{depth}(B)$

So, C, B are inverses.

After swap, N is a subtree of T.