Cut Property

Let \(e \) be the min cost edge in a cut \((S, V-S) \).
Let \(T^* \) be any MST. Then \(e \in T^* \).

Wrong Proof: (by contradiction)

Suppose \(e \in T^* \).
\[\exists \ F \in T^* \ st \ F \notin (S, V-S) . \]
By def \(e \), \(C_F < C_e \).
So, \(T' = T^* - \{F\} + \{e\} \) has a lower cost.

Proof: (by contradiction)

Suppose \(e \in T^* \). Add \(e \) into \(T^* \).
Get a cycle \(C \) which cross \((S, V-S) \).

Let \(g \in C \) s.t. \(g \neq e \).
\[g \in (S, V-S) \]

Let \(T = T^* - \{g\} + \{e\} \).
Since \(C_e < C_g \), so, \(T \) has smaller cost.
\(T \) is spanning tree.
T is spanning tree
- T covers n vertices. √
- T has $n-1$ edge √

T is connected

Since both ends of e is covered by rest of G.

Cycle property
Let f be max cost edge in cycle C.
Then $f \not\in T^*$ for any MST T^*.

Proof by contradiction.
Suppose $f \in T^*$.
Consider removing f from T^*
It creates 2 connected components
(S is the connected components containing u).
Let $T = T^* - e + f$
Again T is spanning tree.
Since $c_e < c_f$, so cost $T < cost T^*$ (contradict).
T is a tree $\Rightarrow |T| = n-1$

T is connected

T covers every vertex.