

Greedy Algorithms / Dijkstra's Algorithm

Yin Tat Lee

Single Source Shortest Path

Given an (un)directed graph G = (V, E) with non-negative edge weights $c_e \ge 0$ and a start vertex *s*.

Find length of shortest paths from s to each vertex in G


```
Dijkstra(G, C, S) {
    Initialize set of explored nodes S \leftarrow \{s\}
   // Maintain distance from s to each vertices in S
   d[s] \leftarrow 0
   while (S \neq V)
    {
       Pick an edge (u, v) such that u \in S and v \notin S and
               d[u] + c_{(u,v)} is as small as possible.
       Add v to S and define d[v] = d[u] + c_{(u,v)}.
       Parent(v) \leftarrow u.
    }
```

Set *S* is all vertices to which we have found the shortest path.

Remarks on Dijkstra's Algorithm

- Algorithm works on directed graph (with nonnegative weights)
- Algorithm produces a tree of shortest paths to s following Parent links (for undirected graph)
- The algorithm fails with negative edge weights.
- Why does it fail?

• For unit length graph, Dijkstra's algorithm is same as BFS.

Implementing Dijkstra's Algorithm

Priority Queue: Elements each with an associated key Operations

- Insert
- Find-min
 - Return the element with the smallest key
- Delete-min
 - Return the element with the smallest key and delete it from the data structure
- Decrease-key
 - Decrease the key value of some element

Implementations

Binary Heaps:

- O(log n) time insert/decrease-key/delete-min,
- 0(1) time find-min

Fibonacci heap:

- 0(1) time insert/decrease-key
- $O(\log n)$ delete-min
- O(1) time find-min

```
Dijkstra(G, c, s) {
   Initialize set of explored nodes S \leftarrow \{s\}
                                                                     O(n) of insert,
   // Maintain distance from s to each vertices in S
                                                                     each in O(1)
   d[s] \leftarrow 0
   Insert all neighbors v of s into a priority queue with value c_{(s,v)}.
   while (S \neq V)
   {
       // Pick an edge (u, v) such that u \in S and v \notin S and
       11
              d[u] + c_{(u,v)} is as small as possible.
                                                                O(n) of delete min,
       u \leftarrow delete min element from Q
                                                                each in O(\log n)
       Add v to S and define d[v] = d[u] + c_{(u,v)}.
       Parent(v) \leftarrow u.
                                                       O(m) of decrease/insert key,
       foreach (edge e = (v, w) incident to v)
            if (w \notin S)
                                                       each runs in O(1)
                if (w is not in the Q)
                   Insert w into Q with value d[v] + c_{(v,w)}
               else (the key of w > d[v] + c_{(v,w)})
                   Decrease key of v to d[v] + c_{(v,w)}.
}
```

Disjkstra's Algorithm: Correctness

Theorem: For any $u \in S$, the path P_u on the tree in the shortest path from s to u on G. (For all $u \in S$, d(u) = dist(s, u).)

Proof: Induction on |S| = k.

Base Case: This is always true when $S = \{s\}$.

Inductive Step: Say v is the $(k + 1)^{st}$ vertex that we add to S. Let (u, v) be last edge on P_v .

If P_v is not the shortest path, there is a shorter path *P* to *S*. Consider the first time that *P* leaves *S* with edge (x, y).

So,
$$c(P) \ge d(x) + c_{x,y} \ge d(u) + c_{u,v} = d(v) = c(P_v)$$
.
P is the shorter path.
A contradiction.
S

 P_{η}

Dijkstra Example

1.6 million vertices3.8 million edgesDistance = travel time.

Images comes from A.V. Goldberg

Dijkstra Example

Searched Area (starting from green point)

Problem of Dijkstra: Didn't take account of where is t

340ms

Bidirectional Dijkstra

Forward search Backward search

Problem of Bidirectional Dijkstra: Forward search did not take account of *t* Backward search did not take account of *s*.

A* Search

- h(v) is the estimate of distance from v to t
- If h(v) is exactly the shortest distance from v to t, then the algorithm would go directly to t.

Dijkstra

A* Search

Let h(v) be the estimate distance from v to t. Define the reduced cost $\tilde{c}_{u,v} = c_{u,v} - h(u) + h(v)$.

Claim 1: Shortest path on \tilde{c} is same as shortest path on c.

Claim 2: If the reduced cost $\tilde{c}_{u,v}$ is non-negative, Dijkstra on \tilde{c} is equivalent to A^* on c with the estimate h.

Therefore, A^* is correct.

Estimating the distance

Euclidean bounds:

Limited applicability, not very good for driving directions.

Triangle inequality:

Let dist(x, y) be the shortest path distance from x to y. For any node l, we can estimate the distance dist(x, t) by dist(x, l) - dist(t, l).

Note that $dist(x,t) + dist(t,l) \ge dist(x,l)$. (Triangle inequality) So, dist(x,l) - dist(t,l) is a lower bound for dist(x,t)!

Algorithm: Select landmarks l_i , define $h(v) = \max_i dist(x, l_i) - dist(t, l_i)$.

A^* + Landmarks + Triangle equality (ATL)

Forward search Backward search Inactive landmarks Active landmarks

Problem of ATL: We should stick with highway!

From now on, we allow to preprocess the graph.

30ms

Reach Algorithm

Use highway except for the beginning and the end of the journey!

Forward search Backward search

Creating shortcut in the graph

When you are on the highway, don't need to keep checking the map until you are nearby!

Reach + Shortcut Algorithm

Forward search Backward search

0.7ms

Reach + Shortcut + ATL Algorithm

