
CSE 421

Greedy Algorithms / Dijkstra’s Algorithm

Yin Tat Lee

1



Single Source Shortest Path

Given an (un)directed graph 𝐺 = (𝑉, 𝐸) with non-negative

edge weights 𝑐𝑒 ≥ 0 and a start vertex 𝑠.

Find length of shortest paths from 𝑠 to each vertex in 𝐺

𝑠



Dijkstra(𝑮, 𝒄, 𝒔) {

Initialize set of explored nodes 𝑺 ← {𝒔}

// Maintain distance from 𝒔 to each vertices in 𝑺

𝒅 𝒔 ← 𝟎

while (𝑺 ≠ 𝑽)

{

Pick an edge (𝒖, 𝒗) such that 𝒖 ∈ 𝑺 and 𝒗 ∉ 𝑺 and 

𝒅[𝒖] + 𝒄(𝒖,𝒗) is as small as possible.

Add 𝒗 to 𝑺 and define 𝒅[𝒗] = 𝒅[𝒖] + 𝒄(𝒖,𝒗).

𝑷𝒂𝒓𝒆𝒏𝒕 𝒗 ← 𝒖.

}

Set 𝑆 is all vertices to which we have found the shortest path.



Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s



Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s



Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s



Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s



Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s



Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s



Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s



Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s



Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s



Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s



Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s



Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s



Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s



Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s



Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s



Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s



Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s



Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s



Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s



Dijkstra’s Algorithm: Example

4

25

10

1

8

4

3

4

3 1

5

8

2

5

6

7

9

s

Dijkstra’s Algorithm outputs a tree.



Remarks on Dijkstra’s Algorithm

• Algorithm works on directed graph (with nonnegative weights)

• Algorithm produces a tree of shortest paths to 𝑠 following 

Parent links (for undirected graph)

• The algorithm fails with negative edge weights. 

• Why does it fail?

• For unit length graph, Dijkstra’s algorithm is same as BFS.



Implementing Dijkstra’s Algorithm

Priority Queue: Elements each with an associated key Operations

• Insert

• Find-min
– Return the element with the smallest key

• Delete-min
– Return the element with the smallest key and delete it from the data structure

• Decrease-key
– Decrease the key value of some element

Implementations

Binary Heaps:
• 𝑂(log𝑛) time insert/decrease-key/delete-min, 

• 𝑂(1) time find-min

Fibonacci heap:
• 𝑂(1) time insert/decrease-key

• 𝑂(log𝑛) delete-min

• O(1) time find-min



Dijkstra(𝑮, 𝒄, 𝒔) {

Initialize set of explored nodes 𝑺 ← {𝒔}

// Maintain distance from 𝒔 to each vertices in 𝑺

𝒅 𝒔 ← 𝟎

Insert all neighbors 𝒗 of s into a priority queue with value 𝒄(𝒔,𝒗). 

while (𝑺 ≠ 𝑽)

{

// Pick an edge (𝒖, 𝒗) such that 𝒖 ∈ 𝑺 and 𝒗 ∉ 𝑺 and 

// 𝒅[𝒖] + 𝒄(𝒖,𝒗) is as small as possible.

u  delete min element from 𝑸

Add 𝒗 to 𝑺 and define 𝒅[𝒗] = 𝒅[𝒖] + 𝒄(𝒖,𝒗).

𝑷𝒂𝒓𝒆𝒏𝒕 𝒗 ← 𝒖.

foreach (edge 𝒆 = (𝒗,𝒘) incident to 𝒗)

if (𝒘 ∉ 𝑺)

if (𝒘 is not in the 𝑸)

Insert 𝒘 into 𝑸 with value 𝒅 𝒗 + 𝒄(𝒗,𝒘)
else (the key of 𝒘 > 𝒅 𝒗 + 𝒄(𝒗,𝒘))

Decrease key of 𝒗 to 𝒅[𝒗] + 𝒄(𝒗,𝒘).

}

𝑂(𝑛) of delete min,

each in 𝑂(log 𝑛)

𝑂(𝑛) of insert,

each in 𝑂(1)

𝑂(𝑚) of decrease/insert key, 

each runs in 𝑂(1)



Disjkstra’s Algorithm: Correctness

Theorem: For any 𝑢 ∈ 𝑆, the path 𝑃𝑢 on the tree in the shortest 

path from 𝑠 to 𝑢 on 𝐺. (For all 𝑢 ∈ 𝑆, 𝑑 𝑢 = dist(𝑠, 𝑢).)

Proof: Induction on 𝑆 = 𝑘.

Base Case: This is always true when 𝑆 = 𝑠 .

Inductive Step: Say 𝑣 is the 𝑘 + 1 𝑠𝑡 vertex that we add to S.

Let (𝑢, 𝑣) be last edge on 𝑃𝑣 .

If 𝑃𝑣 is not the shortest path, there is a shorter path 𝑃 to 𝑆.

Consider the first time that 𝑃 leaves 𝑆 with edge (𝑥, 𝑦). 

So, 𝑐 𝑃 ≥ 𝑑 𝑥 + 𝑐𝑥,𝑦 ≥ 𝑑 𝑢 + 𝑐𝑢,𝑣 = 𝑑 𝑣 = 𝑐 𝑃𝑣 .

A contradiction. S

v

y

u

s

x

𝑃𝑣

𝑃Due to the choice of 𝑣𝑃 is the shorter path.



Dijkstra Example

Images comes from A.V. Goldberg

1.6 million vertices

3.8 million edges

Distance = travel time.



Dijkstra Example

Searched Area

(starting from green point)

Problem of Dijkstra:

Didn’t take account of where is 𝑡



Bidirectional Dijkstra

Forward search

Backward search

Problem of Bidirectional Dijkstra:

Forward search did not take 

account of 𝑡
Backward search did not take 

account of 𝑠.

340ms



AStar(𝑮, 𝒄, 𝒔, 𝒕) {

Initialize set of explored nodes 𝑺 ← {𝒔}

// Maintain distance from 𝒔 to each vertices in 𝑺

𝒅 𝒔 ← 𝟎

while (𝑺 ≠ 𝑽)

{

Pick an edge (𝒖, 𝒗) such that 𝒖 ∈ 𝑺 and 𝒗 ∉ 𝑺 and 

𝒅 𝒖 + 𝒄 𝒖,𝒗 + 𝒉(𝒗) is as small as possible.

Add 𝒗 to 𝑺 and define 𝒅[𝒗] = 𝒅[𝒖] + 𝒄(𝒖,𝒗).

𝑷𝒂𝒓𝒆𝒏𝒕 𝒗 ← 𝒖.

}

𝐴∗ Search

BFS

Dijkstra

𝐴∗
• ℎ 𝑣 is the estimate of distance from 𝑣 to 𝑡
• If ℎ(𝑣) is exactly the shortest distance from 𝑣 to 𝑡, then 

the algorithm would go directly to 𝑡.



𝐴∗ Search

Let ℎ(𝑣) be the estimate distance from 𝑣 to 𝑡.

Define the reduced cost ǁ𝑐𝑢,𝑣 = 𝑐𝑢,𝑣 − ℎ 𝑢 + ℎ(𝑣).

Claim 1: Shortest path on ǁ𝑐 is same as shortest path on 𝑐.

Claim 2: If the reduced cost ǁ𝑐𝑢,𝑣 is non-negative, 

Dijkstra on ǁ𝑐 is equivalent to 𝐴∗ on 𝑐 with the estimate ℎ.

Therefore, 𝐴∗ is correct.



Estimating the distance

Euclidean bounds:

Limited applicability, not very good for driving directions.

Triangle inequality:

Let 𝑑𝑖𝑠𝑡(𝑥, 𝑦) be the shortest path distance from 𝑥 to 𝑦.

For any node 𝑙, we can estimate the distance 𝑑𝑖𝑠𝑡 𝑥, 𝑡 by

𝑑𝑖𝑠𝑡 𝑥, 𝑙 − 𝑑𝑖𝑠𝑡 𝑡, 𝑙 .

Note that 𝑑𝑖𝑠𝑡 𝑥, 𝑡 + 𝑑𝑖𝑠𝑡 𝑡, 𝑙 ≥ 𝑑𝑖𝑠𝑡 𝑥, 𝑙 . (Triangle inequality)

So, 𝑑𝑖𝑠𝑡 𝑥, 𝑙 − 𝑑𝑖𝑠𝑡 𝑡, 𝑙 is a lower bound for 𝑑𝑖𝑠𝑡(𝑥, 𝑡)!

Algorithm: Select landmarks 𝑙𝑖, define

ℎ 𝑣 = max
𝑖

𝑑𝑖𝑠𝑡 𝑥, 𝑙𝑖 − 𝑑𝑖𝑠𝑡 𝑡, 𝑙𝑖 .



𝐴∗ + Landmarks + Triangle equality (ATL)

Forward search

Backward search

Inactive landmarks

Active landmarks

12ms

Problem of ATL:

We should stick with highway!

From now on, we allow to 

preprocess the graph.



Reach Algorithm

Use highway except for 

the beginning and the 

end of the journey!

Forward search

Backward search

30ms



Creating shortcut in the graph

When you are on the highway, don’t need to keep checking the 

map until you are nearby!



Reach + Shortcut Algorithm

Forward search

Backward search

2ms



Reach + Shortcut + ATL Algorithm
0.7ms


