CSE 421

Greedy Algorithms / Caching Problem

Yin Tat Lee
Optimal Caching/Paging

Memory systems

- Many levels of storage with different access times
- Smaller storage has shorter access time
- To access an item it must be brought to the lowest level of the memory system

<table>
<thead>
<tr>
<th>Type</th>
<th>Latency</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registers</td>
<td>0.25 ns</td>
<td>36 KB</td>
</tr>
<tr>
<td>L1 Cache</td>
<td>1 ns</td>
<td>192 KB</td>
</tr>
<tr>
<td>L2 Cache</td>
<td>3 ns</td>
<td>1.5 MB</td>
</tr>
<tr>
<td>L3 Cache</td>
<td>14 ns</td>
<td>15 MB</td>
</tr>
<tr>
<td>DRAM</td>
<td>66 ns</td>
<td>32 GB</td>
</tr>
<tr>
<td>SDD</td>
<td>0.15 ms</td>
<td>480 GB</td>
</tr>
<tr>
<td>Internet</td>
<td>7 ms</td>
<td></td>
</tr>
</tbody>
</table>

My home computer
Optimal Caching/Paging

Memory systems

- Many levels of storage with different access times
- Smaller storage has shorter access time
- To access an item it must be brought to the lowest level of the memory system

Consider the problem between 2 levels

- Main memory with n data items
- Cache can hold $k < n$ items
- Assume no restrictions about where items can be
- Suppose cache is full initially
 - Holds k data items to start with
Optimal Offline Caching

Caching
- Cache with capacity to store k items.
- Sequence of m item requests d_1, d_2, \ldots, d_m.
- Cache hit: item already in cache when requested.
- Cache miss: item not already in cache when requested: must bring requested item into cache, and evict some existing item, if full.

Goal
- Eviction schedule that minimizes number of evictions.

Example: $k = 2$, initial cache $= a, b$, requests: a, b, c, b, c, a, a, b.

Optimal eviction schedule: 2 cache misses.

Why 2 is optimal?
Optimal Offline Caching: Farthest-In-Future

Farthest-in-future

- Evict item in the cache that is not requested until farthest in the future.

 current cache: a b c d e f

 future queries: g a b c e d a b b a c d e a f a d e f g h ...

 cache miss eject this one

Theorem

- [Bellady, 1960s] FIF is an optimal eviction schedule.

Exchange Argument

- We can swap choices to convert other schedules to Farthest-In-Future without losing quality.
Why Exchange Argument?

Greedy cannot handle problems with many local minimum.

Exchange argument basically proving there is no local min.
Warm up \(n = k + 1 \)

Farthest-in-future

- Evict item in the cache that is not requested until farthest in the future.

 current cache: \[a \quad b \quad c \quad d \quad e \quad f \]

 future queries: \[g \quad a \quad b \quad c \quad e \quad d \quad a \quad b \quad b \quad a \quad c \quad d \quad e \quad a \quad f \]

 \[\uparrow \quad \text{cache miss} \quad \uparrow \quad \text{eject this one} \]

When \(n = k + 1 \),
between the cache miss and the farthest-item in the future,
“\[g \quad a \quad b \quad c \quad e \quad d \quad a \quad b \quad b \quad a \quad c \quad d \quad e \quad a \quad f \]”
contains all the item.
Hence, any algorithm must miss once.
Problem: What’s the problem of this proof for \(n > k + 1 \).
Reduced Eviction Schedules

Definition
• A reduced schedule is a schedule that only inserts an item into the cache in a step in which that item is requested.

Intuition
• Can transform an unreduced schedule into a reduced one with no more cache misses.

![Unreduced Schedule](image1)

![Reduced Schedule](image2)

an unreduced schedule

a reduced schedule
Reduced Eviction Schedules

Claim

• Given any unreduced schedule S, can transform it into a reduced schedule S' with no more cache misses.

Proof (by induction on number of unreduced items)

• Suppose S brings d into the cache at time t, without a request.
• Let c be the item S evicts when it brings d into the cache.

Case 1: d evicted at time t', before next request for d.
Case 2: d requested at time t' before d is evicted. □
Farthest-In-Future: Analysis

Theorem
• FIF is optimal eviction algorithm.

Proof. (by induction on number or requests j)

Invariant: There exists an optimal reduced schedule S that makes the same eviction schedule as S_{FIF} through the first $j + 1$ requests.

Let S be reduced schedule that satisfies invariant through j requests. We produce S' that satisfies invariant after $j + 1$ requests.

• Consider $(j + 1)^{\text{st}}$ request $d = d_{j+1}$.
• Since S and S_{FIF} have agreed up until now, they have the same cache contents before request $j + 1$.

Case 1: (d is already in the cache).

$S' = S$ satisfies invariant. (used S is reduced here)

Case 2: (d is not in the cache and S and S_{FIF} evict the same element).

$S' = S$ satisfies invariant.
Farthest-In-Future: Analysis

Proof. (continued)

Case 3: \((d \) is not in the cache; \(S_{\text{FIF}}\) evicts \(e\); \(S\) evicts \(f \neq e\)).

- begin construction of \(S'\) from \(S\) by evicting \(e\) instead of \(f\)

<table>
<thead>
<tr>
<th>j</th>
<th>S</th>
<th>S'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>same</td>
<td>e</td>
</tr>
<tr>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>same</td>
<td>e</td>
</tr>
<tr>
<td>evicted by S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>j + 1</th>
<th>S</th>
<th>S'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>same</td>
<td>e</td>
</tr>
<tr>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>same</td>
<td>d</td>
</tr>
<tr>
<td>evicted by (S_{\text{FIF}})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- now \(S'\) agrees with \(S_{\text{FIF}}\) on first \(j + 1\) requests; we show that having element \(f\) in cache is no worse than having element \(e\)
 - Continue building \(S'\) to be the same as \(S\) until forced to be different
Farthest-In-Future: Analysis

Proof. (continued)

Let \(j' \) be the first time after \(j + 1 \) that \(S \) and \(S' \) must take a different action, and let \(g \) be item requested at time \(j' \).

\[
\begin{array}{c|c|c}
\text{j'} & \text{same} & e \\
S & & \\
\end{array} \quad \begin{array}{c|c|c}
\text{same} & f \\
S' & & \\
\end{array}
\]

Case 3a: \(g = e \).

Can't happen: \(e \) was evicted by Farthest-In-Future so there must be a request for \(f \) before \(e \).

Case 3b: \(g = f \).

Element \(f \) can't be in cache of \(S \), so let \(e' \) be the element that \(S \) evicts.

- if \(e' = e \), \(S' \) accesses \(f \) from cache; now \(S \) and \(S' \) have same cache
- if \(e' \neq e \), \(S' \) evicts \(e' \) and brings \(e \) into the cache; now \(S \) and \(S' \) have the same cache

\[\text{Note: } S' \text{ is no longer reduced, but can be transformed into a reduced schedule that agrees with } S_	ext{FIF} \text{ through step } j + 1 \]
Farthest-In-Future: Analysis

Proof. (continued)
Let j' be the first time after $j + 1$ that S and S' must take a different action, and let g be item requested at time j'.

Case 3c: $g \neq e$ and $g \neq f$.
S must evict e.
Make S' evict f; now S and S' have the same cache.

In each case can now extend S' using rest of S at no extra cost. S' is optimal, reduced, and agrees with S_{FIF} for $j + 1$ steps. Optimality of S_{FIF} follows by induction.
Online Caching

- Online vs. offline algorithms.
 - Offline: full sequence of requests is known a priori.
 - Online (reality): requests are not known in advance.
 - Caching is among most fundamental online problems in CS.

- LIFO. Evict page brought in most recently.
- LRU. Evict page whose most recent access was earliest.

- Theorem. FIF is optimal offline eviction algorithm.
 - Provides basis for understanding and analyzing online algorithms.
 - LRU is k-competitive. [Section 13.8]
 - LIFO is arbitrarily bad.
k-server problem

- There are k fire trucks.
- When fire happens, we need to move a truck there.
- Define ALG is the total movement of all fire trucks.
- Define OPT is the total movement of the optimal plan if we know where the fire happens in advance.
- Define the competitive ratio is ALG/OPT.
Greedy does not work

\[ALG = +\infty. \]
\[OPT = O(1). \]

So, the competitive ratio is \(\frac{ALG}{OPT} = +\infty. \)

For long time, the best competitive ratio is \(O(k). \)

It was conjectured that one can get \(\log^{O(1)}(k). \)

This man did it.

Fusible HSTs and the randomized k-server conjecture

James R. Lee

(Submitted on 6 Nov 2017 (v1), last revised 21 Feb 2018 (this version, v2))