
CSE 421

Greedy Algorithms / Interval Scheduling

Yin Tat Lee

1

Interval Scheduling

• Job 𝑗 starts at 𝑠(𝑗) and finishes at 𝑓(𝑗).

• Two jobs compatible if they don’t overlap.

• Goal: find maximum subset of mutually compatible jobs.

2

Time

0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

Greedy Alg: Earliest Finish Time

Consider jobs in increasing order of finish time. Take each job

provided it’s compatible with the ones already taken.

Implementation. 𝑂(𝑛log 𝑛).
• Remember job 𝑗∗ that was added last to 𝐴.

• Job 𝑗 is compatible with 𝐴 if 𝑠 𝑗 ≥ 𝑓(𝑗∗).

3

Sort jobs by finish times so that f(1)  f(2)  ...  f(n).

𝑨 ← ∅
for j = 1 to n {

if (job j compatible with 𝑨)
𝑨 ← 𝑨 ∪ {𝒋}

}

return 𝑨

Correctness

Theorem: Greedy algorithm is optimal.

Proof: (technique: “Greedy stays ahead”)

Let 𝑖1, 𝑖2, 𝑖3, ⋯ , 𝑖𝑘 be jobs picked by greedy, 𝑗1, 𝑗2, 𝑗3, ⋯ , 𝑗𝑚 those

in some optimal solution in order.

We show 𝑓(𝑖𝑟)  𝑓(𝑗𝑟) for all 𝑟, by induction on 𝑟.

Base Case: 𝑖1 chosen to have min finish time, so 𝑓(𝑖1)  𝑓(𝑗1).

IH: 𝑓(𝑖𝑟)  𝑓 𝑗𝑟 for some r

IS: Since 𝑓 𝑖𝑟 ≤ 𝑓 𝑗𝑟 ≤ 𝑠(𝑗𝑟+1), 𝑗𝑟+1 is among the candidates

considered by greedy when it picked 𝑖𝑟+1, & it picks min finish,

so 𝑓 𝑖𝑟+1 ≤ 𝑓(𝑗𝑟+1)

Observe that we must have 𝑘 ≥ 𝑚, else 𝑗𝑘+1 is among

(nonempty) set of candidates for 𝑖𝑘+1.
4

CSE 421

Greedy Algorithms / Interval Partitioning

Yin Tat Lee

5

Interval Partitioning

Lecture 𝑗 starts at 𝑠(𝑗) and finishes at 𝑓(𝑗).

Goal: find minimum number of classrooms to schedule all lectures so that no

two occur at the same time in the same room.

6Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

Room 1

Room 2

Room 3

Room 4

Interval Partitioning

7Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

Room 1

Room 2

Room 3

Room 4

C

B

A

E

D G

F

J

H

I

Note: graph coloring is hard in general,

but graphs corresponding to interval

intersections are simpler.

A Better Schedule

This one uses only 3 classrooms

8

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

A Greedy Algorithm

Greedy algorithm: Consider lectures in increasing order of

finish time: assign lecture to any compatible classroom.

Correctness: This is wrong!

9

Sort intervals by finish time so that f1  f2  ...  fn.

d  0

for j = 1 to n {

if (lect j is compatible with some classroom k, 𝟏 ≤ 𝒌 ≤ 𝒅)
schedule lecture j in classroom k

else

allocate a new classroom d + 1

schedule lecture j in classroom d + 1

d  d + 1

}

Example

10

Time
0 1 2 3 4 5 6

d

a

b

c

Time
0 1 2 3 4 5 6

d

a

b

c

Greedy by finish time gives: OPT:

Time
0 1 2 3 4 5 6

da

b c

In the interval scheduling

problem, we want to ignore super

long job.

In this problem, we need to

schedule all the jobs.

Picking them tightly is important.

A Greedy Algorithm

Greedy algorithm: Consider lectures in increasing order of

start time: assign lecture to any compatible classroom.

Implementation: Exercise!

11

Sort intervals by starting time so that s1  s2  ...  sn.

d  0

for j = 1 to n {

if (lect j is compatible with some classroom k, 𝟏 ≤ 𝒌 ≤ 𝒅)
schedule lecture j in classroom k

else

allocate a new classroom d + 1

schedule lecture j in classroom d + 1

d  d + 1

}

A Structural Lower-Bound on OPT

Def. The depth of a set of open intervals is the maximum

number that contains any given time.

Key observation. Number of classrooms needed  depth.

Ex: Depth of schedule below = 3 schedule below is optimal.

Q. Does there always exist a schedule equal to depth of

intervals?

12Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

Correctness

Theorem: Greedy algorithm is optimal.

Proof (exploit structural property).

Let 𝑑 = # classrooms greedy allocates.

Classroom 𝑑 is opened because

there are 𝑑 − 1 classrooms are in use.

So, 𝑑 lectures overlapping at time 𝑠 𝑗 , i.e. depth ≥ 𝑑.

So, all schedules use  d classrooms,

So, greedy is optimal ▪

13

CSE 421

Greedy Algorithms / Minimizing Lateness

Yin Tat Lee

14

Scheduling to Minimizing Lateness

• Similar to interval scheduling.

• Instead of start and finish times, request 𝒊 has

Time Requirement 𝒕𝒊 which must be scheduled in a
contiguous block

Deadline 𝒅𝒊 by which time the request would like to
be finished

• Requests are scheduled into
time intervals [𝒔𝒊, 𝒇𝒊] s.t. 𝒕𝒊 = 𝒇𝒊 − 𝒔𝒊.

• Lateness for request 𝒊 is
• If 𝒅𝒊 < 𝒇𝒊 then request 𝒊 is late by 𝑳𝒊 = 𝒇𝒊− 𝒅𝑖 otherwise its

lateness 𝑳𝒊 = 𝟎

• Goal: Find a schedule that minimize the
Maximum lateness 𝑳 = 𝒎𝒂𝒙

𝒊
𝑳𝒊

𝑑𝑗 6

𝑡𝑗 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2 max lateness = 6

16

Minimizing Lateness:

Greedy Algorithms

Greedy template. Consider jobs in some order.

• [Shortest processing time first]

Consider jobs in ascending order of processing time 𝒕𝒋.

• [Smallest slack]

Consider jobs in ascending order of slack 𝒅𝒋 − 𝒕𝒋.

• [Earliest deadline first]

Consider jobs in ascending order of deadline 𝒅𝒋.

counterexampledj

tj

100

1

1

10

10

2

counterexampledj

tj

2

1

1

10

10

2

Greedy Algorithm:

Earliest Deadline First

17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d4 = 9 d5 = 14d2 = 8 d6 = 15d1 = 6 d3 = 9

max lateness = 1

Sort deadlines in increasing order (𝒅𝟏 ≤ 𝒅𝟐 ≤ ⋯ ≤ 𝒅𝒏)
𝒇 𝟎

for 𝒊 ← 𝟏 to 𝒏 to

𝒔𝒊 𝒇

𝒇𝒊  𝒔𝒊 + 𝒕𝒊
𝒇 𝒇𝒊

end for

𝑑𝑗 6

𝑡𝑗 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

Minimizing Lateness: No Idle Time

18

Observation.

• There exists an optimal schedule with no idle time.

Observation.

• The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

Proof for Greedy Algorithm:

Exchange Argument

• We will show that if there is another schedule 𝑶 (think

optimal schedule) then we can gradually change 𝑶 so that

• at each step the maximum lateness in 𝑶 never gets

worse.

• it eventually becomes the same cost as 𝑨.

19

Minimizing Lateness: Inversions

20

ijbefore swap

inversion

Definition
• An adjacent inversion in schedule 𝑺 is a pair of jobs 𝒊 and 𝒋

such that
• 𝒅𝒊 < 𝒅𝒋

• Job 𝒊 is scheduled immediately after Job 𝒋

Observation
• Greedy schedule has no adjacent inversions.

Minimizing Lateness: Inversions

21

Definition

• An adjacent inversion in schedule 𝑺 is a pair of jobs 𝒊
and 𝒋 such that

• 𝒅𝒊 < 𝒅𝒋

• Job 𝒊 is scheduled immediately after Job 𝒋

Claim

• Swapping two adjacent, inverted jobs reduces the

number of inversions by one and does not increase the

max lateness.

ij

i j

before swap

after swap

𝒇𝒋
′

𝒇𝒊
inversion

Minimizing Lateness: Inversions

Lemma: Swapping two adjacent, inverted jobs

does not increase the maximum lateness.

Proof: Let 𝑶′ be the schedule after swapping.

• Lateness 𝑳𝒊’ ≤ 𝑳𝒊 since 𝒊 is scheduled earlier in 𝑶’ than in 𝑶

• Requests 𝒊 and 𝒋 together occupy the same total time slot in both

schedules

• All other requests 𝒌 ≠ 𝒊, 𝒋 have 𝑳𝒌’ = 𝑳𝒌
• 𝒇𝒋’ = 𝒇𝒊 so 𝑳𝒋

′ = 𝒇𝒋
′ − 𝒅𝒋 = 𝒇𝒊 − 𝒅𝒋 < 𝒇𝒊 − 𝒅𝒊 = 𝑳𝒊

• Maximum lateness has not increased!
22

ij

i j

before swap

after swap

𝒇𝒋
′

𝒇𝒊
inversion

Optimal schedules and inversions

Claim: There is an optimal schedule with no idle time and no

inversions

Proof:

• By previous argument there is an optimal schedule 𝑶 with

no idle time

• If 𝑶 has an inversion then it has a consecutive pair of

requests in its schedule that are inverted and can be

swapped without increasing lateness

• Eventually these swaps will produce an optimal schedule

with no inversions

• Each swap decreases the number of inversions by 1

• There are at most 𝒏(𝒏 − 𝟏)/𝟐 inversions.

(we only care that this is finite.) 14

Idleness and Inversions are

the only issue

24

Claim: All schedules with no inversions and no
idle time have the same maximum lateness
Proof:

• Schedules can differ only in how they order
requests with equal deadlines

• Consider all requests having some common
deadline 𝒅

• Maximum lateness of these jobs is based only on
the finish time of the last of these jobs but the set of
these requests occupies the same time segment in
both schedules
• Last of these requests finishes at the same time

in any such schedule.

