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Interval Scheduling

• Job 𝑗 starts at 𝑠(𝑗) and finishes at 𝑓(𝑗).

• Two jobs compatible if they don’t overlap.

• Goal: find maximum subset of mutually compatible jobs.
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Greedy Alg: Earliest Finish Time

Consider jobs in increasing order of finish time. Take each job 

provided it’s compatible with the ones already taken.

Implementation.  𝑂(𝑛log 𝑛).
• Remember job 𝑗∗ that was added last to 𝐴.

• Job 𝑗 is compatible with 𝐴 if 𝑠 𝑗 ≥ 𝑓(𝑗∗).
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Sort jobs by finish times so that f(1)  f(2)  ...  f(n).

𝑨 ← ∅
for j = 1 to n {

if (job j compatible with 𝑨)
𝑨 ← 𝑨 ∪ {𝒋}

}

return 𝑨



Correctness

Theorem:  Greedy algorithm is optimal.

Proof: (technique: “Greedy stays ahead”)

Let 𝑖1, 𝑖2, 𝑖3, ⋯ , 𝑖𝑘 be jobs picked by greedy, 𝑗1, 𝑗2, 𝑗3, ⋯ , 𝑗𝑚 those 

in some optimal solution in order. 

We show 𝑓(𝑖𝑟)  𝑓(𝑗𝑟) for all 𝑟, by induction on 𝑟.

Base Case: 𝑖1 chosen to have min finish time, so 𝑓(𝑖1)  𝑓(𝑗1). 

IH: 𝑓(𝑖𝑟)  𝑓 𝑗𝑟 for some r

IS: Since 𝑓 𝑖𝑟 ≤ 𝑓 𝑗𝑟 ≤ 𝑠(𝑗𝑟+1), 𝑗𝑟+1 is among the candidates 

considered by greedy when it picked 𝑖𝑟+1, & it picks min finish, 

so 𝑓 𝑖𝑟+1 ≤ 𝑓(𝑗𝑟+1)

Observe that we must have 𝑘 ≥ 𝑚, else 𝑗𝑘+1 is among 

(nonempty) set of candidates for 𝑖𝑘+1.
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Interval Partitioning

Lecture 𝑗 starts at 𝑠(𝑗) and finishes at 𝑓(𝑗).

Goal:  find minimum number of classrooms to schedule all lectures so that no 

two occur at the same time in the same room.
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Interval Partitioning
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Note: graph coloring is hard in general, 

but graphs corresponding to interval 

intersections are simpler.



A Better Schedule

This one uses only 3 classrooms
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A Greedy Algorithm

Greedy algorithm:  Consider lectures in increasing order of 

finish time:  assign lecture to any compatible classroom.

Correctness: This is wrong!
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Sort intervals by finish time so that f1  f2  ...  fn.

d  0

for j = 1 to n {

if (lect j is compatible with some classroom k, 𝟏 ≤ 𝒌 ≤ 𝒅)
schedule lecture j in classroom k

else

allocate a new classroom d + 1

schedule lecture j in classroom d + 1

d  d + 1

}    



Example
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In the interval scheduling 

problem, we want to ignore super 

long job.

In this problem, we need to 

schedule all the jobs.

Picking them tightly is important.



A Greedy Algorithm

Greedy algorithm:  Consider lectures in increasing order of 

start time:  assign lecture to any compatible classroom.

Implementation: Exercise!
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Sort intervals by starting time so that s1  s2  ...  sn.

d  0

for j = 1 to n {

if (lect j is compatible with some classroom k, 𝟏 ≤ 𝒌 ≤ 𝒅)
schedule lecture j in classroom k

else

allocate a new classroom d + 1

schedule lecture j in classroom d + 1

d  d + 1

}    



A Structural Lower-Bound on OPT

Def.  The depth of a set of open intervals is the maximum 

number that contains any given time.

Key observation.  Number of classrooms needed   depth.

Ex:  Depth of schedule below = 3 schedule below is optimal.

Q.  Does there always exist a schedule equal to depth of 

intervals?
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Correctness

Theorem:  Greedy algorithm is optimal.

Proof (exploit structural property).  

Let 𝑑 = # classrooms greedy allocates.

Classroom 𝑑 is opened because

there are 𝑑 − 1 classrooms are in use.

So, 𝑑 lectures overlapping at time 𝑠 𝑗 , i.e. depth ≥ 𝑑.

So, all schedules use  d classrooms,

So, greedy is optimal ▪

13



CSE 421

Greedy Algorithms / Minimizing Lateness

Yin Tat Lee

14



Scheduling to Minimizing Lateness

• Similar to interval scheduling.

• Instead of start and finish times, request 𝒊 has

Time Requirement 𝒕𝒊 which must be scheduled in a 
contiguous block

Deadline 𝒅𝒊 by which time the request would like to 
be finished

• Requests are scheduled into 
time intervals [𝒔𝒊, 𝒇𝒊] s.t. 𝒕𝒊 = 𝒇𝒊 − 𝒔𝒊.

• Lateness for request 𝒊 is
• If 𝒅𝒊 < 𝒇𝒊 then request 𝒊 is late by 𝑳𝒊 = 𝒇𝒊− 𝒅𝑖 otherwise its 

lateness 𝑳𝒊 = 𝟎

• Goal: Find a schedule that minimize the 
Maximum lateness 𝑳 = 𝒎𝒂𝒙
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Minimizing Lateness:  

Greedy Algorithms

Greedy template.  Consider jobs in some order. 

• [Shortest processing time first]

Consider jobs in ascending order of processing time 𝒕𝒋.

• [Smallest slack]

Consider jobs in ascending order of slack 𝒅𝒋 − 𝒕𝒋.

• [Earliest deadline first]

Consider jobs in ascending order of deadline 𝒅𝒋.
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Greedy Algorithm:                     

Earliest Deadline First
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Minimizing Lateness: No Idle Time

18

Observation.

• There exists an optimal schedule with no idle time.

Observation.

• The greedy schedule has no idle time.
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Proof for Greedy Algorithm: 

Exchange Argument

• We will show that if there is another schedule 𝑶 (think 

optimal schedule) then we can gradually change 𝑶 so that 

• at each step the maximum lateness in 𝑶 never gets 

worse.

• it eventually becomes the same cost as 𝑨.
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Minimizing Lateness: Inversions
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ijbefore swap

inversion

Definition
• An adjacent inversion in schedule 𝑺 is a pair of jobs 𝒊 and 𝒋

such that
• 𝒅𝒊 < 𝒅𝒋

• Job 𝒊 is scheduled immediately after Job 𝒋

Observation
• Greedy schedule has no adjacent inversions.



Minimizing Lateness: Inversions
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Definition

• An adjacent inversion in schedule 𝑺 is a pair of jobs 𝒊
and 𝒋 such that

• 𝒅𝒊 < 𝒅𝒋

• Job 𝒊 is scheduled immediately after Job 𝒋

Claim

• Swapping two adjacent, inverted jobs reduces the 

number of inversions by one and does not increase the 

max lateness.
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Minimizing Lateness: Inversions

Lemma: Swapping two adjacent, inverted jobs 

does not increase the maximum lateness.

Proof: Let 𝑶′ be the schedule after swapping. 

• Lateness 𝑳𝒊’ ≤ 𝑳𝒊 since 𝒊 is scheduled earlier in 𝑶’ than in 𝑶

• Requests 𝒊 and 𝒋 together occupy the same total time slot in both 

schedules

• All other requests 𝒌 ≠ 𝒊, 𝒋 have 𝑳𝒌’ = 𝑳𝒌
• 𝒇𝒋’ = 𝒇𝒊 so 𝑳𝒋

′ = 𝒇𝒋
′ − 𝒅𝒋 = 𝒇𝒊 − 𝒅𝒋 < 𝒇𝒊 − 𝒅𝒊 = 𝑳𝒊

• Maximum lateness has not increased!
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Optimal schedules and inversions

Claim: There is an optimal schedule with no idle time and no 

inversions

Proof:

• By previous argument there is an optimal schedule 𝑶 with 

no idle time

• If 𝑶 has an inversion then it has a consecutive pair of 

requests in its schedule that are inverted and can be 

swapped without increasing lateness

• Eventually these swaps will produce an optimal schedule 

with no inversions

• Each swap decreases the number of inversions by 1

• There are at most  𝒏(𝒏 − 𝟏)/𝟐 inversions. 

(we only care that this is finite.) 14



Idleness and Inversions are 

the only issue
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Claim: All schedules with no inversions and no 
idle time have the same maximum lateness
Proof:

• Schedules can differ only in how they order 
requests with equal deadlines

• Consider all requests having some common 
deadline 𝒅

• Maximum lateness of these jobs is based only on 
the finish time of the last of these jobs but the set of 
these requests occupies the same time segment in 
both schedules
• Last of these requests finishes at the same time 

in any such schedule.


