
CSE 421:  Introduction 

to Algorithms

Breadth First Search 

Yin Tat Lee

1



Properties of BFS

Claim: All nontree edges join vertices on the same or 
adjacent levels of the tree

Proof: Consider an edge {𝑥, 𝑦}
Say 𝑥 is first discovered and it is added to level 𝑖.
We show y will be at level 𝑖 or 𝑖 + 1

This is because when vertices incident to 𝑥 are considered 
in the loop, if 𝑦 is still undiscovered, it will be discovered 
and added to level 𝑖 + 1.

2



Properties of BFS

Lemma: All vertices at level 𝑖 of BFS(𝑠) have shortest path 
distance 𝑖 to 𝑠.

Claim: If 𝐿 𝑣 = 𝑖 then shortest path ≤ 𝑖
Pf: Because there is a path of length 𝑖 from 𝑠 to 𝑣 in the BFS tree

Claim: If shortest path = 𝑖 then 𝐿 𝑣 ≤ 𝑖
Pf: If shortest path = 𝑖, then say 𝑠 = 𝑣0, 𝑣1, … , 𝑣𝑖 = 𝑣 is the 
shortest path to v.

By previous claim, 
𝐿 𝑣1 ≤ 𝐿 𝑣0 + 1
𝐿 𝑣2 ≤ 𝐿 𝑣1 + 1

…
𝐿 𝑣𝑖 ≤ 𝐿 𝑣𝑖−1 + 1

So, 𝐿 𝑣𝑖 ≤ 𝑖.

This proves the lemma. 
3



Why Trees?

Trees are simpler than graphs

Many statements can be proved on trees by induction

So, computational problems on trees are simpler than 
general graphs

This is often a good way to approach a graph problem: 

• Find a "nice" tree in the graph, i.e., one such that non-
tree edges have some simplifying structure

• Solve the problem on the tree

• Use the solution on the tree to find a “good” solution on 
the graph

4



CSE 421:  Introduction 

to Algorithms

Application of BFS 

Yin Tat Lee

5



BFS Application: Connected Component

We want to answer the following type questions (fast):

Given vertices 𝑢, 𝑣 is there a path from 𝑢 to 𝑣 in 𝐺?

Idea: Create an array 𝐴 such that

For all 𝑢 in the same connected component, 𝐴[𝑢] is same.

Therefore, question reduces to

If 𝐴 𝑢 = 𝐴[𝑣]?

6



Initial State: All vertices undiscovered, 𝑐 = 0
For 𝑣 = 1 to 𝑛 do

If state(𝑣) != fully-explored then

Run BFS(𝑣)

Set 𝐴 𝑢 ← 𝑐 for each 𝑢 found in BFS(𝑣)

𝑐 = 𝑐 + 1

Note: We no longer initialize to undiscovered in the BFS 
subroutine

Total Cost: 𝑂(𝑚 + 𝑛)
In every connected component with 𝑛𝑖 vertices and 𝑚𝑖
edges BFS takes time 𝑂 𝑚𝑖 + 𝑛𝑖 .

Note: one can use DFS instead of BFS.
7

BFS Application: Connected Component



Connected Components

Lesson: We can execute any algorithm on disconnected 
graphs by running it on each connected component.

We can use the previous algorithm to detect connected 
components. 

There is no overhead, because the algorithm runs in time 
𝑂(𝑚 + 𝑛).

So, from now on, we can (almost) always assume the input 
graph is connected.

8



Cycles in Graphs

Claim: If an 𝑛 vertices graph 𝐺 has at least 𝑛 edges, then it 
has a cycle.

Proof: If 𝐺 is connected, then it cannot be a tree. Because 
every tree has 𝑛 − 1 edges. So, it has a cycle.

Suppose 𝐺 is disconnected. Say connected components of 
G have 𝑛1, … , 𝑛𝑘vertices where 𝑛1 +⋯+ 𝑛𝑘 = 𝑛

Since 𝐺 has ≥ 𝑛 edges, there must be some 𝑖 such that a 
component has 𝑛𝑖 vertices with at least 𝑛𝑖 edges.

Therefore, in that component we do not have a tree, so 
there is a cycle.

9



Bipartite Graphs

Definition: An undirected graph 𝐺 = (𝑉, 𝐸) is bipartite

if you can partition the node set into 2 parts (say, blue/red 
or left/right) so that 

all edges join nodes in different parts

i.e., no edge has both ends in the same part.

Application: 

• Scheduling: machine=red, jobs=blue

• Stable Matching: men=blue, wom=red

10

a bipartite graph



Testing Bipartiteness

Problem: Given a graph 𝐺, is it bipartite?

Many graph problems become:

• Easier/Tractable if the underlying graph is bipartite (matching)

Before attempting to design an algorithm, we need to 

understand structure of bipartite graphs.

11

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G



An Obstruction to Bipartiteness

Lemma: If 𝐺 is bipartite, then it does not contain an odd 

length cycle.

Proof: We cannot 2-color an odd cycle, let alone 𝐺.

12

bipartite

(2-colorable)

not bipartite

(not 2-colorable)

?



A Characterization of Bipartite Graphs

Lemma: Let 𝐺 be a connected graph, and let 𝐿0, … , 𝐿𝑘 be the 

layers produced by BFS(𝑠).  Exactly one of the following holds.

(i) No edge of 𝐺 joins two nodes of the same layer, and 𝐺 is 

bipartite.

(ii)  An edge of 𝐺 joins two nodes of the same layer, and 

𝐺 contains an odd-length cycle (and hence is not bipartite).

13
Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3



A Characterization of Bipartite Graphs

Lemma: Let 𝐺 be a connected graph, and let 𝐿0, … , 𝐿𝑘 be the 

layers produced by BFS(𝑠).  Exactly one of the following holds.

(i) No edge of 𝐺 joins two nodes of the same layer, and 𝐺 is 

bipartite.

(ii)  An edge of 𝐺 joins two nodes of the same layer, and 

𝐺 contains an odd-length cycle (and hence is not bipartite).

Proof.  (i)

Suppose no edge joins two nodes in the same layer.

By previous lemma, all edges join nodes on adjacent levels.

14
Case (i)

L1 L2 L3

Bipartition:  

blue = nodes on odd levels, 

red = nodes on even levels.



A Characterization of Bipartite Graphs

Lemma: Let 𝐺 be a connected graph, and let 𝐿0, … , 𝐿𝑘 be the 

layers produced by BFS(𝑠).  Exactly one of the following holds.

(i) No edge of 𝐺 joins two nodes of the same layer, and 𝐺 is 

bipartite.

(ii)  An edge of 𝐺 joins two nodes of the same layer, and 

𝐺 contains an odd-length cycle (and hence is not bipartite).

Proof.  (ii)

Suppose {𝑥, 𝑦} is an edge & 𝑥, 𝑦 in same level 𝐿𝑗.

Let 𝑧 = their lowest common ancestor in BFS tree.

Let 𝐿𝑖 be level containing 𝑧.

Consider cycle that takes edge from 𝑥 to 𝑦,

then tree from 𝑦 to 𝑧, then tree from 𝑧 to 𝑥.

Its length is  1 + 𝑗 − 𝑖 + (𝑗 − 𝑖), which is odd.

15

z = lca(x, y)



Obstruction to Bipartiteness

Corollary: A graph 𝐺 is bipartite if and only if it contains no 

odd length cycles. 

Furthermore, one can test bipartiteness using BFS.

16

bipartite

(2-colorable)

not bipartite

(not 2-colorable)



Summary of last lecture

• BFS(𝑠) implemented using queue.

• Edges into then-undiscovered vertices define a tree –
the “Breadth First spanning tree” of 𝐺

• Level 𝑖 in the tree are exactly all vertices 𝑣 s.t., the 
shortest path (in 𝐺) from the root 𝑠 to 𝑣 is of length 𝑖

• All nontree edges join vertices on the same or adjacent 
layers of the tree

• Applications:
• Shortest Path

• Connected component 

• Test bipartiteness / 2-coloring 17



CSE 421

Depth First Search

Yin Tat Lee

18



Depth First Search

Follow the first path you find 

as far as you can go; back up 

to last unexplored edge when 

you reach a dead end, 

then go as far you can 

Naturally implemented using recursive calls or a stack

19



DFS(s) – Recursive version

Initialization: mark all vertices undiscovered

DFS(𝑣) 

Mark 𝑣 discovered

for each edge {𝑣, 𝑥}

if (𝑥 is undiscovered)

Mark 𝑥 discovered

𝑥 → parent = 𝑢

DFS(𝑥)

Mark 𝑣 fully-discovered

20



Non-Tree Edges in DFS

BFS tree ≠ DFS tree, but, as with BFS, DFS has found a 

tree in the graph s.t. non-tree edges are "simple" in some 

way.

All non-tree edges join a vertex and one of its 

descendants/ancestors in the DFS tree

21



22

DFS(A)

Suppose edge lists

at each vertex 

are sorted 

alphabetically

Color code:

undiscovered

discovered

fully-explored

Call Stack

(Edge list):

A (B,J)

st[] =           

{1}



23

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

st[] =           

{1,2}



24

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

st[] =           

{1,2,3}



25

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

st[] =           

{1,2,3,4}



26

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

st[] =           

{1,2,3,4,5}



27

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

F (D,E,G)

st[] =           

{1,2,3,4,5,

6}



28

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

F (D,E,G)

G(C,F)

st[] =           

{1,2,3,4,5,

6,7}



29

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

F (D,E,G)

G(C,F)

st[] =           

{1,2,3,4,5,

6,7}



30

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

F (D,E,G)

st[] =           

{1,2,3,4,5,

6}



31

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

E (D,F)

st[] =           

{1,2,3,4,5}



32

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

D (C,E,F)

st[] =           

{1,2,3,4}



33

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

st[] =           

{1,2,3}



34

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

st[] =           

{1,2,3,8}



35

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

I (H)

st[] =           

{1,2,3,8,9}



36

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

st[] =           

{1,2,3,8}



37

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

st[] =           

{1,2,3,8, 

10}



38

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

K (J,L)

st[] =           

{1,2,3,8,10

,11}



39

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

K (J,L)

L (J,K,M)

st[] =           

{1,2,3,8,10

,11,12}



40

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

K (J,L)

L (J,K,M)

M(L) 

st[] =           

{1,2,3,8,10

,11,12,13}



41

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

K (J,L)

L (J,K,M)

st[] =           

{1,2,3,8,10

,11,12}



42

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

K (J,L)

st[] =           

{1,2,3,8,10

,11}



43

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

st[] =           

{1,2,3,8, 

10}



44

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

J (A,B,H,K,L)

st[] =           

{1,2,3,8, 

10}



45

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

H (C,I,J)

st[] =           

{1,2,3,8}



46

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

C (B,D,G,H)

st[] =           

{1,2,3}



47

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

st[] =           

{1,2}



48

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

B (A,C,J)

st[] =           

{1,2}



49

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

st[] =           

{1}



50

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

A (B,J)

st[] =           

{1}



51

DFS(A)
Color code:

undiscovered

discovered

fully-explored

Call Stack:

(Edge list)

TA-DA!!

st[] =  {}



52

DFS(A) Edge code:

Tree edge

Back edge



53

DFS(A)
Edge code:

Tree edge

Back edge

No Cross Edges!



Properties of (undirected) DFS

Like BFS(𝑠):

• DFS(𝑠) visits 𝑥 iff there is a path in G from 𝑠 to 𝑥
So, we can use DFS to find connected components

• Edges into then-undiscovered vertices define a tree –
the "depth first spanning tree" of G

Unlike the BFS tree: 

• The DF spanning tree isn't minimum depth

• Its levels don't reflect min distance from the root

• Non-tree edges never join vertices on the same or 
adjacent levels

54



Non-Tree Edges in DFS

Lemma: For every edge {𝑥, 𝑦}, if {𝑥, 𝑦} is not in DFS tree, then 
one of 𝑥 or 𝑦 is an ancestor of the other in the tree.

Proof:

Suppose that 𝑥 is visited first.

Therefore DFS(𝑥) was called before DFS(𝑦)

Since {𝑥, 𝑦} is not in DFS tree, 𝑦 was visited when the edge {𝑥, 𝑦}
was examined during DFS(𝑥)

Therefore 𝑦 was visited during the call to DFS(𝑥) so 𝑦 is a 
descendant of 𝑥.

55


